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1 First Order Differential Equations

This post will be a brief overview of first-order differential equations. I won't be focusing
mainly on proofs here, but instead techniques for solving equations, as well as existence
and uniqueness theorems. Uniqueness tells us that there is only one solution to the
differential equation in the specified interval.

These notes require cursory knowledge of linear algebra and multivariable calculus.

1.1 Integrating Factors

Integrating factors can be used to solve first order equations of degree 1, in other words
equations of the form:

y′ + P (t)y = Q(t)

The idea is to multiply through by a factor µ(t) suitably chosen so that the left hand side
is an instance of the product rule. This integrating factor turns out to be:

µ(t) = e
∫
P (t)dt

Multiplying through, we are left with the product rule on the left hand side, yielding a
new simpler differential equation:

(µ(t)y(t))′ = µ(t)Q(t)

And this shouldn't be difficult to integrate in general.

1.2 Separable Equations

A separable differential equation can be rewritten in the form:

N(y)
dy

dx
= M(x)
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1 First Order Differential Equations

Rewriting:

N(y)dy = M(x)dx

Integrating both sides gives a solution for y.

1.3 Exact Equations

We start with a differential equation of the form:

dy

dx
= −M(x, y)

N(x, y)

Or equivalently, we can write:

M +N
dy

dx
= 0

Now, we can arrive at this same differential equation in another way. Suppose we have
an implicit function f(x, y) = c, which describes some sort of level set of a curve. For
example, we could have circles, with f(x, y) = x2 + y2 = c defining a circle of radius √c.

Then, by the Implicit Function Theorem, assuming the Jacobian matrix of f is invertible,
then we can write:

f(x, y(x)) = c

In other words, we can write y in terms of x. Furthermore, dy/dx, the rate of change,
can be computed:

dy

dx
= −

∂f
∂x
∂f
∂y

So instead of studying the above differential equation, we study the related implicitly
defined surface with f(x, y) = c for some constant, such that fx = M,fy = N (where fx
denotes the partial derivative ∂f

∂x ). It isn't too hard to find such a function f in general
by integrating M with respect to x and N with respect to y.

We could equivalently say that we can check for exactness with the necessary and suffi-
cient condition that My = Nx, and then use the above method.
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1 First Order Differential Equations

Example Let us look at: dy
dx = −x

y defined in an open set away from y = 0. We have
M = x,N = y (note: you can pick other pairs, such as M = 2x,N = 2y and the only
thing that will change is our choice of constant). It is not hard to see by integration that
we can pick f(x, y) = x2 + y2 = c. So instead of solving the above differential equation,
we simply use the initial conditions to find c and then solve for y in terms of x.

1.4 Existence and Uniqueness

How do we assure existence and uniqueness of solutions to a first order differential
equation?

Theorem

If p(x), g(x) are continuous in an open interval I containing x = x0, then there
exists a unique function y(x) satisfying the equation:

y′ + p(x)y = g(x)

As well as the initial condition y(x0) = 0 for each x ∈ I.

The proof of existence is given by construction in the ``integrating factors'' method.
Uniqueness is guaranteed by the continuity of p, g. This tells us that linear first order
differential equations have unique solutions.

Theorem

Let f(x, y) be a real-valued function with continuous derivative ∂f
∂y which is

continuous in some rectangle in the plane containing the point (x0, y0). As a
stronger condition, we could simply set f to be differentiable in some rectan-
gle. Then in some interval (x0−h, x0+h), there is a unique function y = ϕ(x)
such that:

ϕ(x)′ = f(x, y)

ϕ(x0) = y0

For a given y0.

This tells us that, given certain conditions, we can even have unique solutions to non-
linear first order differential equations satisfying initial conditions (namely ,we just need
y′ = f(x, y) continuous with fy continuous).
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1 First Order Differential Equations

Euler’s Method To approximate a solution, we could set a sufficiently small parameter
h and walk a distance h the tangent line at any point. The error is the quadratic term of
the Taylor expansion; by making h sufficiently small, we can remain close to the curve.
We can also create n equations, called ``finite difference equations'', expressing yn, a
value at stage n, in terms of yn−1 recursively. In these cases, it is useful to consider the
equilibrium solutions yn = yn+1.
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2 Second Order Linear Equations

We move onto second order linear differential equations. First, we need a theorem that
tells us what kinds of solutions exist for differential equations.

2.1 Existence and Uniqueness

We need a suitable theorem guaranteeing uniqueness. The theorem goes just as we
expected:

Theorem Let p, q, r be continuous in an interval I. Then the differential equation:

y′′ + py′ + qy = r

With initial conditions y(t0) = y0 and y′(t0) = v0, has a unique solution in the interval.

We start with looking at the simplest type of second order linear differential equations.
To make things simple, we set the coefficients to be constants, and the right hand side
to be zero.

2.2 Homogeneous Equations with Constant Coefficients

We have a differential equation of the form:

ay′′ + by′ + cy = 0

Such an equation where the right hand side is zero is called a homogeneous equation.

We could then we could use a trial solution y = ert, which yields the associated auxiliary
equation (or characteristic equation):

ar2 + br + c = 0

Since ert ̸= 0. Solving this yields two solutions.
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2 Second Order Linear Equations

As an alternative way of writing this, we can call the derivativeD withDf = f ′, D2f = f ′′,
etcetera. Then the differential equation becomes:

(aD2 + bD + c)y = 0

And to get a nontrivial solution y ̸= 0, we solve the same auxiliary equation for D.

First note that for a homogeneous linear equation, linear combinations of solutions yield
solutions; this creates a vector space structure for the solutions.

This is called the superposition principle: for any two solutions to a homogeneous linear
equation, any linear combination of the solutions is also a solution.

In general, for a linear constant coefficient differential equation of order n, the space of
solutions is dimension n. So we only need to construct n linearly independent solutions,
which we do as follows:

• For a real root, we use ert.

• For a real root repeated with multiplicity m, we add ert, tert, ..., tm−1ert. You can
check that these are all solutions to the differential equation (D − r)my = 0 and
are linearly independent away from t = 0.

• For complex roots a± bi we can write eat cos bt, eat sin bt.

• For repeated complex roots a±biwe canwrite eat cos bt, eat sin bt, teat cos bt, teat sin bt,
etcetera.

2.3 Linear Independence

As mentioned earlier, the solutions to a linear homogeneous differential equation of
order n on an interval I form a vector space of order n. So what we're looking for is
a basis of solutions. The above construction gives us n solutions, so we need to check
that they are linearly independent; if they are, we have indeed found a basis.

Definition: Let f1, f2, ...fn be a set of smooth functions on an interval I. We look at the
following equation:

c1f1 + c2f2 + ...+ cnfn = 0

Where ci are constants. Note that by 0 here we are denoting the zero function; in other
words, this equation should hold for all inputs x.

If we can find a solution where at least one ci is nonzero, we call the functions linearly
dependent on the interval; if instead the only solution has each ci = 0, the functions are
called linearly independent.
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2 Second Order Linear Equations

If we can find a solution ci, it is clear that the above equation still holds when we take
the derivative of both sides (and thus the second derivative, third derivative, etc). Thus,
if the set fi is linearly independent, then we have a non-trivial solution to the following
system of equations.

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


c1...
cn

 =

0...
0


This system of equations has a nontrivial solution if and only if:

det

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n

 = 0

Definition: For functions f1, ...fn, the above determinant is called the Wronskian of
f1, ...fn, denoted W (f1, ...fn). The above matrix is called a fundamental matrix.

Now, we can leverage our knowledge of linear algebra to state the following theorem.

Theorem Let f1, ...fn are solutions to an order n linear homogeneous differential equa-
tion in an interval. Then, f1, ...fn are linearly independent if and only if the Wronskian
W (f1, ..., fn) is nonzero somewhere in the interval.

2.4 Reduction of Order

So how exactly did we come to the above construction of solutions for repeated roots
in a linear constant coefficient homogeneous equation? The answer lies in the method
known as reduction of order.

Suppose we have a linear differential equation of the form:

y′′ + p(t)y′′ + q(t)y = r(t)

With p, q, r continuous and r possibly zero. And suppose that we know some solution
y1 (with continuous derivative) which is never zero in an interval. Then, we can try a
solution of the form y2 = vy1 for some twice differentiable function v. Substitution and
some algebra yields:
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2 Second Order Linear Equations

v′′ +

(
2y′1
y1

+ p

)
v′ =

r

y1

Since this is a linear first order differential equation and y′1, p, r are assumed to be con-
tinuous with y1 nonzero, we know there is a unique solution in our interval.

Note that though we are essentially dealing with a first order differential equation for v′,
when we integrate v′ we obtain an integration constant. We can WLOG write v = ṽ + c,
and thus write:

y2 = ṽy1 + cy1

As we expected, we end up with two integration constants: the first comes from solving
the above differential equation for v′; the second comes from integrating v. With two
initial conditions, then, we can solve for these two constants uniquely.

Thus, we can use reduction of order to solve a general (homogeneous or non-
homogeneous) 2nd order linear differential equation where we know one solution.

Example Take a constant coefficient differential equation with repeated roots, such as
(D− r)2y = (D2 − 2Dr+ r2)y = 0. We already have a solution of the form ert, so we set:

y = vert

We know that y1 = ert, y′1 = rert Our equation for v becomes:

v′′ +

(
2y′1
y1

+ 2p

)
v′ =

r

y1

v′′ = 0

Thus, we have v = at+b, for some real coefficients a, b. Our linearly independent solution
to the differential equation is then:

y = vy1 = atert + bert

And for simplicity sake, we can set a = 1, b = 0 and still have a linearly independent pair.

2.5 General Solutions to Non-Homogeneous Linear Differential
Equations

Suppose we are working with a second order linear equation:
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2 Second Order Linear Equations

y′′ + p(t)y′′ + q(t)y = r(t)

And suppose we have two solutions to the above equation, y1 and y2. Then, we know
the following:

y′′1 + p(t)y′′1 + q(t)y1 = r(t)

y′′2 + p(t)y′′2 + q(t)y2 = r(t)

(y1 − y2)
′′ + p(t)(y2 − y1)

′ + q(t)(y2 − y1) = 0

So, y1 − y2 is a solution to the associated homogeneous equation! This is useful for
the following theorem that allows us to solve non-homogeneous linear differential equa-
tions.

Theorem Suppose we have have a linear, non-homogeneous differential equation.
Then the general solution can be written:

y(t) = yc + yp

Where yc is a solution of the associated homogeneous equation, called the complemen-
tary solution, and yp is one particular solution of the homogeneous equation, called the
particular solution.

From now on, we will call a linearly independent set of solutions y1, ..., yn to a homoge-
neous equation, a set of fundamental solutions (which, accordingly, fill out the first row
in a fundamental matrix). We can then rewrite the above solution:

y(t) =

n∑
i=1

ciyi + yp

Where the coefficients ci can be solved for if we are given n initial conditions.

This theoremgives us amethod of solving a general non-homogeneous linear differential
equation:

• Solve the associated homogeneous equation to get a general solution c1y1 + ...+
cnyn.

• Find one solution of the non-homogeneous equation yp.

• Sum the two quantities above to obtain a general solution of the non-
homogeneous equation.

• Use n initial conditions to solve for ci in the complementary solution.
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2 Second Order Linear Equations

The Method of Undetermined Coefficients We first covered the case where we are
working with a linear constant coefficient homogeneous differential equation. Using the
previous section, we know that a general solution to a non-homogeneous linear equation
can be written as y = yc + yp. Let's take a look at a special case where we can solve for
such a solution easily.

Using the technique from earlier of writing first derivatives as D, second derivatives
as D2, etcetera, we can indeed write a linear differential operator, or a polynomial
function of D. For example:

y′′ + y = 0

(D2 + 1)y = 0

P (D)y = 0

Where P (D) = D2 + 1 is a polynomial in D.

Conditions Suppose we are working with a non-homogeneous differential equation of
the form:

P (D)y = F (t)

And further suppose that F (t) is a solution of some linear homogeneous constant coef-
ficient equation A(D)y = 0. We call A(D) an annihiliator of F (t).

Because we know what these kinds of solutions look like, that means that F (t) could be:
- F (t) is of the form tkert for some real number r and non-negative integer k. - F (t) is of
the form c1t

keat cos(bt)+ c2t
keat sin(bt), where a, b, c1, c2 are real and k is non-negative. -

F (t) is a linear combination of the above forms of solutions.

In this case, we can ``multiply'' both sides by A(D) to get a higher order homogeneous
equation:

A(D)P (D)y = A(D)F (t) = 0

And we know exactly how to solve this kind of equation. Note that if y is a solution to
P (D)y = 0, then y is a solution to A(D)P (D)y = 0. This fact will become important in
just a second.

Finding a Solution From our theorem, we know that the solutions to P (D)y = F (t) are
of the form y = yc+yp, where P (D)yc = 0. So the first thing we do to solve our equation
is find the complementary solutions yc using above methods.

Next, we solve A(D)P (D)y = 0 to obtain a set of solutions c1y + 1 + ... + ckyk. As
we noted before, every solution of our target non-homogeneous differential equation is
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2 Second Order Linear Equations

also a solution to the equation A(D)P (D)y = 0, and is thus of the form c1y1 + ...+ ckyk.
Furthermore, from computing the complementary solutions we know that yc = c1y1+...+
cnyn for some n < k. Thus, we know that yp = y − yc is of the form cn+1yn+1 + ...+ ckyk.

Finally, substituting into the equation P (D)yp = F (t), we can solve for these coefficients;
hence the name, the method of undetermined coefficients. Once we have yp, we can
write our general solution y = yc + yp.

To summarize the method: - Find an annihilator A(D) of F (t). - Find the complementary
solution yc by solving the equation P (D)yc = 0. - Solve the equation A(D)P (D)y = 0,
obtaining a solution of the form ỹ = yc+yp, where yp is written as a linear combination of
other functions with unknown coefficients. - Substitute yp into the equation P (D)yp =
F (t) to solve for the undetermined coefficients. - Write solutions to the differential
equation as y = yp + yc. - Given n initial conditions, solve for the coefficients in yc.

2.6 Summary

With these tools, we can do the following for linear differential equations: - Guaran-
tee the existence and uniqueness of solutions to the equation on an interval. - Check
if solutions to a differential equation are linearly independent. - Given one solution to
a second-order equation, we can find another linearly independent solution using re-
duction of order, thus completely solving the equation. - Given a constant coefficient
homogeneous equation, we can find all the solutions. - Given a non-homogeneous con-
stant coefficient equation of a particular form, we can use the method of undetermined
coefficients to find all the solutions.

In the next section, we tackle the problem of finding solutions to arbitrary non-
homogeneous equations of any order.
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3 Higher Order Linear Equations

We move onto higher order linear differential equations. As before, we need some
suitable existence and uniqueness theorem which works for the general case.

3.1 Existence and Uniqueness

In general, a linear differential equation is of the form:

any
(n) + an−1y

(n−1) + ...+ a0y = g(t)

Where an are functions and y(n) represents the nth derivative of y.

Theorem

Suppose we have a linear differential equation with coefficients ai(t) and right
hand side equal to g(t) defined in an interval I. Then, given n initial conditions
y(n)(t0) = cn, there exists a unique solution to the differential equation in the
interval.

Note that we already know how to solve this equation in many cases by borrowing tech-
niques from the first two chapters:

• If the coefficients are constant and the right hand side is zero, we use the same
methods as in Chapter 2.

• If the coefficients are constant and the right hand side is of a particular form, we
can use the method of undetermined coefficients.

• If we know one solution, we can reduce our order n equation into an order n − 1
equation using the method of reduction of order.

Furthermore, we still know the form of a general solution of a non-homogeneous linear
equation as a sum of a complementary and a particular solution; and the Wronskian can
still be used to check for linear independence of solutions. The following theorem tells
us that the solution space for a homogeneous equation is exactly dimension n.
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3 Higher Order Linear Equations

Theorem

Suppose we have an equation of the form:

any
(n) + an−1y

(n−1) + ...+ a0y = 0

Where ai are continuous on an interval. Then, if we find y1, y2, ...yn linearly
independent solutions to the equation, then every solution can be expressed
as a linear combination of y1, ..., yn.

We call such a solution set a fundamental set of solutions.

3.2 Variation of Parameters

Finally, we arrive at the most important tool we have for solving a non-homogeneous
nth order linear differential equation.

Suppose we have an equation of the form:

y(n) + an−1y
(n−1) + ...+ a0y = f(t)

In other words, the first coefficient is 1.

Taking the associated homogeneous equation, let y1, ..., yn be its fundamental solutions.
Then we try to find a solution to the non-homogeneous equation of the form:

y = u1y1 + u2y2 + ...+ unyn

Where ui are functions.

To solve uniquely for each ui, we need n equations. To find them, we first take the
derivative of y:

y′ =

n∑
i=1

u′iyi + uiy
′
i

To make things easier for us, we set the condition
n∑

i=1
u′iyi = 0. Taking the second deriva-

tive, we get:

y′ =
n−1∑
i=1

u′iyi + uiy
′
i
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3 Higher Order Linear Equations

And similarly, we set the condition
n∑

i=1
u′iy

′
i = 0. Repeating this process until we hit the

n− 1th derivative, we get n− 1 conditions. The final condition comes from substituting
in our trial solution into the differential equation:

y(n) + an−1y
(n−1) + · · ·+ a0y = f(t)

Now substituting in y(n) =
n∑

i=1
uiy

(n)
i + u′iy

(n−1)
i , we get:

n∑
i=1

uiy
(n)
i + u′iy

(n−1)
i + an−1

∑
uiy

(n−1)
i + ...+ a0

∑
uiyi = f(t)

But note that for each yi, since it is a solution to the associated homogeneous equation,
we have:

y
(n)
i + an−1y

(n−1)
i + ...+ a0yi = 0

So most of these terms drop out! The only terms that remain give us:

n∑
i=1

u′iy
(n−1)
i = f(t)

To summarize, our conditions look like:

u′1y1 + ...+ u′1yn = 0

u′1y
′
1 + ...+ u′1y

′
n = 0

...
u′1y

(n−1)
1 + ...+ u′1y

(n−1)
n = f(t)

And to put this in matrix form:

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


u1...
un


′

=

 0
...

f(t)


So, as long as W ̸= 0, we can solve for u′i and thus integrate to find ui.
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3 Higher Order Linear Equations

Summary of Method Suppose we have an equation of the form:

y(n) + an−1y
(n−1) + ...+ a0y = f(t)

Where we have a set of fundamental solutions yi to the associated homogeneous equa-
tion. Then, we can write a solution as:

y = u1y1 + ...+ unyn

Where ui are found by solving the equation:

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


u1...
un


′

=

 0
...

f(t)
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4 Systems of First Order Linear Equations

We now generalize to first-order systems of linear equations, in other words systems of
the form:

x′1 = a11x1 + ...+ a1nxn + b1

x′2 = a21x1 + ...+ a2nxn + b2

...
x′n = an1x1 + ...+ annxn + bn

Where aij(t) and bi(t) are functions. Of course, we can write this in matrix form as:

x1...
xn


′

=

a11 ... a1n
... . . . ...

an1 ... ann


x1...
xn

+

b1...
bn


Or more succinctly, writing x as the vector with xi as its entries, we can write:

x' = Ax+ b

By analogy, we say that the equation is homogeneous if b = 0. A solution is written as
a vector with the ith entry representing a solution for the ith equation.

As an analogy with the dimension 1 case, we have the superposition principle, which
states that for solutions x1, x2 to a homogeneous linear system, c1x1 + c2x2 yields a
solution for any constants c1, c2.

From here on out, we will focus on homogeneous systems, and later on discuss non-
homogeneous systems using the methods outlined earlier.

As before, we start with the guarantee of existence and uniqueness of solutions.

4.1 Existence and Uniqueness

Suppose we have a linear system defined on an interval:
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4 Systems of First Order Linear Equations

x' = Ax+ b

With initial conditions given by the vector equation x(t0) = x0. Then, if the entries of
A and the entries of b all continuous functions in the interval, there is a unique solution
vector x(t) which exists throughout the interval.

4.2 Linear Independence

Perhaps more concretely, we can see that a homogeneous system of equations should
have n linearly independent solutions (and in fact, this implies our earlier result that an
order n linear equation ought to have n linearly independent solutions).

This makes sense because, if we evaluate both sides of the matrix equation at a particular
point, we have nothing more than an n× n matrix system of equations.

Definition: Let x1, ..., xn be a set of solutions to a homogeneous linear system. Then
the matrix X(t) with these vectors as its columns is called the fundamental matrix:

X =
[
x1 x2 . . . xn

]
The determinant of X is called the Wronskian of x1, . . . , xn.

We now have essentially the same criteria for independence: a set of solutions is lin-
early independent at a point if and only if their Wronskian is nonzero there.

If the Wronskian is nonzero, we call x1, . . . , xn a set of fundamental solutions, as before.

Furthermore, we want to say something like the earlier theorem which guarantees that
every solution can be written as a combination of enough linearly independent solutions.

Theorem

If the vector functions x1, . . . , xn are linearly independent solutions of an or-
der n linear system in an interval, then each solution for the system can be
written uniquely as a combination (there is only one choice for each ci):

x = c1x1 + . . . cnxn

We accordingly will call the form c1x1+ . . . cnxn the general solution, and given a vector
of initial conditions x(0) = x0, we can indeed set t = 0 and solve for the coefficients in
the general linear algebra way.
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Theorem

Given a set of solutions to an order n linear system x1, . . . , xn, then in an
interval α < t < β, the Wronskian is either zero everywhere or never vanishes.

This theorem makes our lives a lot easier. We know how to check linear independence
at a point by taking the Wronskian at that point. Now we can further say that all we have
to do is check a single point, and we have linear independence in an entire interval.

The proof, while interesting, will be ommitted since it doesn't addmuch to our dsicussion
of differential equations.

The last thing we should do is, as promised, guarantee that a set of n fundamental
solutions exists, i.e. that there are n linearly independent solutions to our equation.

Theorem

In particular, suppose we have a linear system x′ = Ax and solve this system
with the initial condition that X(t0) = I (i.e, xi(t0) is the ith column of the
identity matrix). Then, x1, . . . , xn form a fundamental set of solutions.

To prove this theorem, first we know that for each row Ij of the identity matrix, we have
the existence and uniqueness of a solution to the equation x′j = Axj with x(t0) = Ij .
And it isn't hard to see that if we pick t = t0, our fundamental matrix is defined to
be the identity matrix, which has nonzero determinant. From our earlier theorem, this
tells us that x1, . . . , xn are linearly independent throughout the interval, and thus form a
fundamental set of solutions.

Our last theorem guarantees a nice result for complex solutions.

Theorem

Consider a linear system x′ = Ax, where each entry of A is continuous and
real-valued in an interval. Then, if we have a complex solution x = u(t)+iv(t),
both its real parts and its complex parts are solutions to the original equation.

This theorem becomes clear by taking the derivative of x, and then noticing both sides
of the equation have to agree in both the real and imaginary parts.

Summary The general theory for linear systems tells us:

• If A, b are continuous and initial conditions are given, then a solution x′ = Ax + b
exists and is unique in an interval.

• For a linear system, there exists at least one set of n fundamental solutions
x1, . . . , xn, for which the Wronskian is nonzero at a point. If the Wronskian is
nonzero at a point, it is nonzero throughout an interval.
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• Every solution can be written as a linear combination of fundamental solutions,
with the coefficients determined by the initial conditions.

4.3 Connection to Higher Order Linear Equations

We can transform a higher order linear equation into a matrix system as above, and thus
everything we proved in the last system about the theory of higher order linear equations
is just a special case. As an example, look at the second order homogeneous equation:

y′′ + a1y
′ + a0y = 0

We can pick a vector y =

[
y
y′

]
. Solving for y′′, we obtain y′′ = −(by + ay′), so we get a

system of equations:

[
y
y′

]′
=

[
0 1

−a0 −a1

] [
y
y′

]

Note that the determinant of the coefficient matrix is simply a0. We could do the same
thing for a third order equation to obtain:

 y
y′

y′′

′

=

 0 1 0
0 0 1

−a0 −a1 −a2

 y
y′

y′′


And here the determinant is −a0.

It is not hard to see that in general, we can turn an order n linear differential equation
into an order n linear system. The determinant of the coefficient matrix will always be
±a0, In particular, if a0 = 0 at a point, we are indeed left with an order n − 1 equation,
since y does not appear in the equation at all.

We now move on to solving systems of equations with constant coefficients.

4.4 Homogeneous Linear Systems With Constant Coefficients

As before, we start with the simplest case, in which all the coefficients are constant and
the right hand side is zero. We come up with a trial solution.

Suppose that v is an eigenvector of the matrix A with eigenvalue λ. Then any multiple
of v is also an eigenvector of x with eigenvalue λ.
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In particular, the equation v′ = Av becomes v′ = λv for any eigenvector. So we pick
x = eλtv, thus solving our equation since x′ = λeλtv = λx.

This means that if A has n real, distinct eigenvalues, then we're done, since eigenvectors
for distinct eigenvalues are linearly independent -- so we have found a fundamental set
of solutions. But as you might expect, there are other cases than that.

4.4.1 Complex Eigenvalues

First, we know that complex eigenvalues occur in conjugate pairs. We can tell this be-
cause when finding eigenvalues, we solve a polynomial with real coefficients, and such
polynomials have conjugate pair roots. It is not hard to see that eigenvectors, as well,
occur in conjugate pairs.

Suppose we have such a complex pair of eigenvalues, λ ± iµ. Then using the same
methods outlined above, we have a solution:

x = (a+ bi)e(λ+iµ)t

Where a, b are vectors which are the real and imaginary parts of an eigenvector. But we
can use Euler's identity eit = cos t+ i sin t, and rearrange to get:

x = eλt(a cosµt− b sinµt) + ieλt(a sinµt+ b cosµt)

We know from an earlier theorem that both the real and the imaginary parts of this
expression are solutions to the differential equation. So instead of writing two complex
solutions, we can write two real solutions instead:

x1 = eλt(a cosµt− b sinµt)
x2 = eλt(a sinµt+ b cosµt)

4.4.2 Repeated Eigenvalues

Say we have an eigenvalue λwhich is repeated in the characteristic equation. If there are
n linearly independent eigenvectors associatedwith λ, we are done; the problem is when
there are not. Earlier in the 1 dimensional case, when we had an issue of repeated roots
in a characteristic equation, we picked teλt as a trial solution. We did this by performing
reduction of order to get a linearly independent solution of the form c1e

rt + c2te
rt, and

setting c1 = 0. We will apply a similar trick here.

Suppose x0 = eλtv is a solution to the equation x′ = Ax, where v is an eigenvector for
eigenvalue λ. Then we try to construct another solution of the form:
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x1 = teλtv + eλtw

Setting x′1 = Ax, and noting A
(
eλtv

)
= λ

(
eλtv

)
we have:

x′1 = eλtv + λteλtv + λeλtw

Ax1 = λteλtv +Aeλtw

Cancelling the equal terms and setting the two equal, we get:

v = (A− λI)w

Because we know that (A− λI)v = 0, we can equivalently write:

(A− λI)2w = 0

This is the essential idea behind constructing solutions to matrix systems of differential
equations with repeated eigenvalues. Our solution looks like:

x1 = teλtv + eλtw

Where (A− λI)w = v.

Definition: A vector w is called a generalized eigenvector of rank m of A if we have:

(A− λI)mw = 0

(A− λI)m−1w ̸= 0

Note that if w is a generalized eigenvector of rank m, then (A − λI)w is a generalized
eigenvector of rank m − 1, and so on. By repeating this process, we can get a chain
of m − 1 generalized eigenvectors called a Jordan chain. Jordan chains are linearly
independent. Note that the last vector in this chain is a generalized eigenvector of rank
1, which is just an eigenvector.

Theorem

Every n×nmatrix has a set of linearly independent generalized eigenvectors.

This theorem allows us to construct n linearly independent solutions. In fact, if you're
familiar with linear algebra, this is equivalent to stating the existence of the Jordan canon-
ical form.
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Method For Solving We aim to solve x′ = Ax, in general. For each eigenvalue λ, we
look at the equation (A− λI)v = 0.

• Compute the solutions to (A− λI)mv = 0 for each m until (A− λI)m = 0.

• Pick a vector vm such that (A − λI)mv = 0 but (A − λI)m−1v ̸= 0. This is called a
generalized eigenvector of rank m.

• Compute the associated Jordan chain, with vm as chosen above, vm−1 = (A −
λI)vm, vm−2 = (A− λI)2vm etc.

• Use the Jordan chain above to construct the following linearly independent solu-
tions to the differential equation:

x1 = eλtv1

x2 = teλtv1 + eλtv2

x3 =
t2

2!
eλtv1 + teλtv2 + eλtv3

...

xm = eλt

(
m∑
i=1

tk−1

(k − 1)!
vi

)

• If we need more solutions, pick a linearly independent generalized eigenvector of
rank k and repeat this process.

With some knowledge of linear algebra, you can say that in a sense, the Jordan chains
are uniquely determined. That is to say, we can say the λ has a certain number of Jordan
chains with certain sizes, and these sizes are fixed. However, that's outside of the scope
of these notes for now.

4.5 Non-Homogeneous Linear Systems

We now move to a discussion of linear systems of the form:

x′ = Ax+ b

Where once again, the entries of A, b are continous to guarantee a solution. By the same
exact argument we made before, we can write the solution to any such equation in the
form:

x = c1x1 + · · ·+ cnxn + v
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Where xi form a set of fundamental solutions to the associated homogeneous equation
(something like a complementary solution), and v is a solution to the non-homogeneous
equation (a particular solution). Furthermore, we can use matrix multiplication to rewrite:

x = Xc+ v

Where c =

 c1. . .
cn

 is a vector of coefficients. We start with a simple case

4.5.1 Diagonalization

Let's say A is a diagonalizable matrix. From linear algebra, this means A can be written
as A = SDS−1, where D is a diagonal matrix. If this is the case, then we can perform a
change of variables by picking x = Sy or equivalently, y = S−1x. Then we have:

x′ = Ax+ b

Sy′ = SDS−1Sy + b

Sy′ = SDy + b

y′ = Dy + b

Since D is a diagonal matrix, this reduces to a set of first order equations:

y′1 = λ1y1 + b1

y′2 = λ1y2 + b2

...
y′n = λnyn + bn

We have effectively uncoupled the equations; instead of solving them simultaneously,
we can now solve them separately, and to get x we apply the transformation x = Sy. If
b = 0, we have the manifest solution yi = cie

λt. If b ̸= 0, we still have a set of first order
linear equations, which we know we can solve from the first chapter. In the next chapter
we'll see another way of solving this type of differential equation.

4.5.2 Variation of Parameters

Recall that given a set of solutions to the associated homogeneous equation, we used
the variation of parameters method to find a solution for the non-homogeneous equa-
tion by writing y = u1y1 + · · · + unyn for some functions ui. We can do the same thing
for matrix systems.
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Assume we have already found a fundamental matrix X for the associated equation
x′ = Ax. Then we search for a solution for the non-homogeneous equation of the form
x = Xu, where u is any vector of functions. Differentiating, we get:

x′ = Ax+ b

X ′u+Xu′ = AXu+ b

You can verify for yourself that the product rule does work for matrices. Since X is a
fundamental matrix, we have X ′ = AX, so we can write:

Xu′ = b

Since the fundamental matrix has a nonzero determinant, it has an inverse, and indeed
we can solve for u:

u =

∫
X−1bdt+ c

Where c is any constant vector. In the first part of this chapter, we discovered that higher
order linear systems are special cases of matrix systems. Using that same transformation,
we get exactly the setup for variation of parameters as before. The only difference is
that now, the constraints that felt like odd choices before now make more sense. As
long as the Wronskian is nonzero, the fundamental matrix is invertible and the method
works.
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In this chapter, we'll take a look at various additional topics which are generally covered
in a differential equations course, in no particular order.

5.1 Series Solutions for Second Order Linear Homogeneous
Equations

We look at the equations of the form:

P (x)y′′ +Q(x)y′ +R(x)y = 0

Where P,Q,R are functions have convergent power series around a point x0. For simplic-
ity sake, P,Q,R are generally restricted to polynomials in an intro differential equations
course, and we assume that there is no common divisor for P,Q,R.

Definition: x0 is called an ordinary point if P (x0) ̸= 0.

From continuity, we know that there is a small interval where x0 ̸= 0. In that interval, we
divide through to get the differential equation:

y′′ + p(x)y′ + q(x)y = 0

And the coefficients are then continuous. Therefore, there exists a unique solution for
given initial conditions in the interval.

Definition: x0 is called an singular point if P (x0) = 0.

At a singular point, the coefficients p, q are not continuous, and solutions are not guar-
anteed.

We want to find solutions of the form:

y =

∞∑
n=0

an(x− x0)
n

It may be helpful to review some basic facts about power series. We assume that there
is some radius of convergence ρ > 0 so that if |x− x0| < rho, the series converges at x.
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In the interval of convergence, we can deal with power series term by term -- treating
them essentially like polynomials.

Example Let's try to solve the differential equation:

y′′ + y = 0

At the point t = 0, which we know has solutions cos t, sin t. Assume our solution is of
the form y =

∞∑
n=0

anx
n, and substitute into the equation. Note that power series can be

differentiated term by term:

y′′ + y = 0

We can take derivatives to get:

y′′ =

∞∑
n=0

n(n− 1)anx
n−1

And renumbering the indices, we can rewrite:

y′′ =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

Adding together the series for y′′ + y, we arrive at the following equation:

y′′ + y =
∞∑
n=0

[(n+ 1)(n+ 2)an+2 + an]x
n

It is not hard to see that for this power series to be 0, each coefficient must be 0 (to
prove this, set x = 0 and thus the first coefficient is zero, take the derivative, and repeat
this process). Therefore, we have the recurrence relations given by:

an+2 =
−an

(n+ 1)(n+ 2)

We can solve for a0, a1 by giving initial conditions for y, y′. Now, let's for example, look
at the first few even terms:
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a2 =
(−1)a0
2 · 1

a4 =
(−1)2a0
4 · 3 · 2 · 1

a6 =
(−1)3a0

6 · 5 · 4 · 3 · 2 · 1

In general, this pattern gives:

a2n = a0
(−1)2n

(2n)!

But these are exactly the coefficients for the power series of a0 cosx! Looking at the
odd coefficients, we similarly get the coefficients for the power series of a1 sinx. So we
can indeed write our series solution:

y = a0 cosx+ a1 sinx

Just as we expected. Note that this sort of thing doesn't always happen. However, in
many cases it may be useful to compute quite a few coefficients to get a reasonable
approximation of solutions. In the non-homogeneous case, this is essentially the tech-
nique used in Fourier series, but that topic is generally covered in a partial differential
equations course.

Generalizations We considered the problem of equations of the form:

P (x)y′′ +Q(x)y′ +R(x)y = 0

Where P,Q,R are polynomials, P (x0) ̸= 0, which we defined as an ordinary point. We
wish to find more general conditions under which a solution exists.

Assume that we have a solution y = f(x) =
∞∑
n=0

an(x−x0)
n which converges for |x−x0| <

ρ. Taking the mth derivative f (m) and setting x = x0, we get the equation:

f (m)(x0) = m!am

So the problem of finding the coefficients of a series solution reduces to the problem of
finding f (m) for some solution y = f(x) to the differential equation. But we know that:

P (x)f ′′ +Q(x)f ′ +R(x)f = 0

f ′′ = −p(x)f ′ − q(x)f
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Where as before, p = Q/P, q = R/P . In particular at x = x0, we have:

f ′′(x0) = −p(x0)f
′(x0)− q(x0)f(x0)

And therefore, if we are given initial conditions y(x0), y′(x0), then we can solve for a2 in
our power series.

Similarly, we can differentiate the above expression to obtain:

f ′′′ = −
[
q′f + (q + p′)f ′ + pf ′′]

And thus, if p, q can be differentiated, then we can solve for the third coefficient a3 since
all the quantities above are known at x = x0. This motivates the condition we need to
guarantee the existence of the power series solution. We don't just require that p, q can
be differentiated infinitely many times, we also require that their power series converge.

Definition: A function f(x) is analytic at f(x0) if it has a Taylor series expansion which
converges to f(x) in some interval around x0.

This motivates a stronger definition for ordinary points.

Definition: A point x = x0 of a differential equation is ordinary if p(x), q(x) are analytic
at x0; otherwise, x0 is said to be a singular point.

Finally, the following theorem connects our new definition of an ordinary point to the
existence of solutions.

Theorem

If x0 is an ordinary point of the above differential equation:

P (x)y′′ +Q(x)y′ +R(x)y = 0

then, the general solution of the differential equation can be written:

y =

∞∑
n=0

an(x− x0)
n = a0y1(x) + a1y2(x)

Where y1, y2 are a fundamental set of solutions which are both analytic at x0.
The radius of convergence of y1, y2 is at least as large as the minimum radius
at which the series p, q both converge.

This theorem tells us that at an ordinary point (one where the coefficients are analytic),
two series solutions exist, which form a set fundamental solutions. Furthermore, as long
as p, q both converge at a point, y1, y2 also converge at that point.
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In general, once we have found a bound on our radius of convergence, the idea is to sub-
stitute y =

∞∑
n=0

an(x−x0)
n into the differential equation and see what kinds of conditions

we can place on the coefficients.

5.2 Cauchy-Euler Equations

A Cauchy-Euler equation is of the form:

anx
ny(n) + an−1x

n−1y(n−1) + . . . a0y = 0

We will consider constant coefficient equations at first. Take a second order equation of
the form:

x2y′′ + axy′ + by = 0

We assume that x > 0. Our guess of a solution looks like y = xr for some integer r,
since in each term, we take n derivatives and multiply by xn. In the case x < 0 we would
similarly substitute −xr, or in general substitute |x|r it In particular, we get:

x2y′′ + axy′ + by = 0

r(r − 1)xr + arxr + bxr = 0

[r(r − 1) + ar + b]xr = 0

Assuming x ̸= 0, we now are left with a characteristic equation for r. This all should
look very familiar to you, as it's an almost identical process to the constant coefficient
homogeneous equations we studied earlier, where we subtituted in a trial solution y =
erx. Since ex

r
= erx, this clues us into a substitution we can make.

In the above equation, let x = et, which we can do so long as x > 0; then the equation
becomes a differential equation in terms of t. With some use of the chain rule, we indeed
get:

y′′ + ay′ + by = 0

Which is a constant coefficient equation with the same characteristic equation which we
know how to solve. Now we can look at solutions of the Cauchy Euler equation by
looking at the roots of the characteristic equation.

• For a real repeated root, y = ert, tert, t2ert, etc. Substituting in x = et, we have:

y = xr, (lnx)xr, (lnx)2xr, . . .
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• For a complex root, y = eat cos bt, eat sin bt, etc. Substituting in x = et, we have:

y = xr cos(b lnx), xr sin(b lnx), xr(lnx) cos(b lnx), xr(lnx) sin(b lnx), . . .

And you can check that these solutions are linearly independent. To obtain the result for
x < 0, we can simply do a coordinate transformation x̃ = −x and reduce to the earlier
case. You can check that in the above formulas, we need only replace x with |x| to get
a solution for all cases.

5.3 The Laplace Transform

The Laplace Transform is a method of transforming a problem in one domain to a prob-
lem in another. Once we have solved the transformed version of a differential equation,
we can use the inverse transformation to get a set of solutions. We define:

Definition: Let f(t) be defined for t ≥ 0. Then we define the Laplace Transform F (s),
or L{f(t)}, to be the improper integral:

L{f(t)} = F (s) =

∫ ∞

0
e−stf(t)dt

The following theorem gives us conditions for which the Laplace transform is well-
defined.

Theorem

Let f be piecewise continuous on 0 ≤ t ≤ A, for anyA. Furthermore, suppose
there exists a positive value M so that for all t ≥ M , we have: |f(t)| ≤ Keat,
for someK > 0 and a real. Then, the Laplace Transform L{f(t)} exists for all
s > a.

This theorem essentially tells that for some large enough value, we need f(t) to not
overpower eat, which is a reasonable condition to have. The proof is using basic calculus.

One important property of the Laplacian is that it is linear, meaning L[af + bg] = aL[f ]+
bL[g], for any constants a, b and functions f, g. This follows from the fact that integration
is linear. Furthermore, we assume the inverse of the Laplace transform is well-defined,
though we will not prove it.

5.3.1 Table of Laplace Transforms

The following table gives a few of the useful Laplace Transforms that we can use to solve
differential equations.
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f(t) F(s) = L[f(t)] = F (s)

eatf(t) F (s− a)
1 1

s
eat 1

s−a

tn n!
sn+1

sin bt b
s2+b2

cos bt s
s2+b2

t sin bt 2b
(s2+b2)2

t cos bt s2−b2

(s2+b2)2

f ′(t) sF (s)− f(0)
f ′′(t) s2F (s)− sf(0)− f ′(0)

A key point here is that if you look at derivatives, the Laplace transform turns a differential
equation into an algebraic equation, which are in general far easier to solve.

Example Let's solve our prototypical example:

y′′ + y = 0

With initial conditions y(0) = 1, y′(0) = 0. We already know the solution is cosx. Taking
the Laplace transform of both sides using our table, we get:

s2F (s)− sy(0)− y′(0) + F (s) = 0(s2 + 1)F (s) = sF (s) =
s

1 + s2

And indeed, F (s) is the Laplace transform of cosx, as we expected.

This example may seem fairly trivial; Laplace transform only truly becomes useful when
dealing with non-continuous quantites. We take a look at two important such cases.

5.3.2 Heaviside Function

We define the Heaviside or step function:

uc(t) =

{
0 t < c

1 t ≥ c

We can use this to create a ``step up - step down'' function. For example, if we wanted
a function which was zero everywhere except in the region a < t < b, we can simply use
the difference ua(t)− ub(t).

We determine the Laplace transform of the Heaviside function by integration.
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L[uc(t)] =
∫ ∞

0
e−stuc(t)dt

=

∫ ∞

c
e−stdt

=
e−cs

s

One application of the Heaviside function is to translate a function. Look at the product
uc(t)f(t− c):

uc(t)f(t− c) =

{
0 t < c

f(t− c) t ≥ c

So we have essentially translated f over to the right by c. You can check that the Laplace
transform gives:

L[uc(t)f(t− c)] =

∫ ∞

0
e−stf(t− c)dt

= e−csF (s)

So translating a function to the right by c results in multiplying its Laplace transform by
e−cs.

These types of shapes occur often in signal processing, which is when the Laplace trans-
form is the most useful.

5.3.3 Dirac Delta Function

We define the Dirac delta function δ(t):

∫ ∞

−∞
f(t)δ(t) = f(0)

We can interpret the Dirac delta function (which is not technically a function) as a function
which is zero everywhere except the origin, where it is infinite. We can construct it as
the limit of a step-up, step-down function:

δ(t− c) = lim
ϵ→0

1

2ϵ
(uc−ϵ(t)− uc+ϵ(t))

Now using this definition, we can integrate and get the Laplace transform of the Dirac
delta function:
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L[δ(t− c)] =

∫ ∞

0
e−stδ(t− c)dt

= e−cs

And indeed, we have L[δ(t)] = 1.

For nonhomogeneous linear equations where the right hand side is discontinuous, we
can often use the Laplace transform to make the problem easier to solve, though gener-
ally we may need to use some algebraic tricks such as partial fractions and completing
the square.

5.4 The Matrix Exponential

Recall that earlier when we were dealing with the matrix system:

x′ = Ax

And where A was diagonalizable, we were able to uncouple our equations and get n
separate linear equations. However, in that section we mentioned there was an easier
method, which involves something called the matrix exponential.

Theorem

Suppose we have the equation:

x′ = Ax

With A as a constant matrix, and the initial condition given by x(0) = x0.
Then the solution is given by:

x = eAtx0

Where eAt is the matrix exponential.

This can be seen by analogy with the one dimensional case. Suppose we had:

x′ = ax

For some constant a, and x(0) = x0. Then the solution, by integration, is x = Ceat for
some constant C. Using the initial condition gives C = x0.

36



5 Further Topics

5.4.1 Defining the Matrix Exponential

We use the definition of the one dimensional exponential:

eat = 1 + at+ (at)2/2 · · · =
∞∑
k=0

(at)k

k!

We can define the matrix exponential in a similar way:

eAt = I +At+ (At)2/2 · · · =
∞∑
k=0

(At)k

k!

The matrix exponential enjoys many properties which we associate with the exponential.
We will list a few of the useful ones here:

• e0 = I.

• eaXebX = ea+bX

• d
dte

At = AeAtX

• If A is diagonalizable, i.e. A = SDS−1, then eA = SeDS−1.

• det(eA) = etr(A)

Where tr refers to the trace of A. The first three properties can be proved using direct
computation. Note that the first property tells us that when we constructed a fundamen-
tal matrix so thatX(0) = I, we indeed had a matrix which was a matrix exponential. The
final property is called Jacobi's formula and requires an involved proof we won't get
into here.

With some knowledge of linear algebra, we can generalize the above property for di-
agonalizable matrices to all matrices using the Jordan normal form. The exercise of
computing the matrix exponential of a Jordan normal form is left to the reader, but the
key point is to compute each block separately and break each block into the sum of a
diagonal matrix and another matrix.

We can use the matrix exponential to generalize the method of integrating factors.

5.4.2 The Non-homogeneous Case

Suppose instead we have a system which looks like:

x′ = Ax+ b
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And again, A is constant. We attempt to multiply both sides by e−At (an integrating
factor) to obtain:

e−Atx′ −Ae−Atx = e−Atb

The key here is that the matrix exponential works like the regular exponential, and so
the left hand side becomes an instance of the product rule:

d

dt
(e−Atx) = e−Atb

Integrating, we have:

x = eAt

∫
e−Atb

Thus, the matrix exponential, if it can be easily computed, can be used to efficiently
solve homogeneous or non-homogeneous matrix systems with constant coefficients.

5.5 Nonlinear Differential Equations

We begin with the one dimensional case. Suppose we are working with a non-linear
differential equation of the form:

x′ = f(x)

We say that x0 is a fixed point or equilibrium point if f(x0) = 0. The reason behind this
term is because if we set x(0) = x0, then x′(0) = 0; indeed the derivative never changes,
and x remains constant forever.

We next consider what happens under small perturbations; will x eventually return to its
stable point or will it shoot off to infinity? We let x = x0+ϵ(t), where ϵ(t) starts out small.
Note that x′ = ϵ′, and f(x0) = 0, so we can use Taylor series to get the first few terms of
ϵ′:

x′ = ϵ′ ≈ ϵf ′(x0) +
ϵ2

2
f ′′(x0)

We ignore the second term, to get:

ϵ′ = ϵf ′(x0)

ϵ ≈ ef
′(x0)
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So we can summarize the above discussion as follows: - If f ′ > 0 at an equilbirium point,
then a small perturbation will blow up exponentially, and we say such a point is unstable.

• If f ′ < 0 at an equilbirium point, then a small perturbation will decay exponentially,
and we say such a point is stable.

• If f ′ = 0 at an equilbirium point, then a small perturbation will lead to neither
exponential decay nor exponential growth, and we say such a point is marginally
stable.

We can indeed try to find an approximate solution to such an equation near an equilbrium
point by calculating the first few terms of the Taylor series for f(x).

5.5.1 Two Dimensions

We move on to the two dimensional case, where we have:

x′ = F (x, y)

y′ = G(x, y)

Here, we have both x and y are functions of t, but the functions F,G only depend on
x, y. We call such a system an autonomous system.

Again, we define an equilibrium point as F (x, y) = G(x, y) = 0.

To get a qualitative idea of what the solutions look like, we can plot x, y for various
values and draw vectors indicating the direction of change at each point. This is called a
phase plane diagram, and is particularly useful in physics, where we can plot for example
position and velocity.

To find an approximation F,G near an equilibrium point, we use the nearest linear ap-
proximation to the pair of functions at that point. In one dimension, this would be simply
the derivative. In two dimensions, we use the Jacobian:

A =

[
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

]

We evaluate this matrix at a particular equilibrium point x0, y0. Using something like a
Taylor series, we get the following differential equation

[
x
y

]′
= A(x0, y0)

[
x− x0
y − y0

]
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5.5.2 Types of Equilibrium Points

As in the one dimensional case, the behavior of our system near an equilibrium point
depends on the first derivative. In particular, we look at the eigenvalues of the Jacobian
matrix A. We have the following definitions:

Eigenvalues Type of Equilbrium Point
Real, negative Stable node
Real, positive Unstable node
Opposite sign Saddle
Complex with negative real part Stable spiral
Complex with positive real part Unstable spiral
Complex with zero real part Stable center

These definitions come from the types of shapes the system makes in the phase plane.

For example, if the eigenvalues are both pure imaginary, then we know from Chapter 4
what the fundamental solutions to this system look like. Let the eigenvalues be called
±µ. Then we have two fundamental solutions:

x1 = v1 cosµt
x2 = v1 sinµt

For some vector v1 which is the imaginary part of an eigenvector. This means every
solution x = (x, y) looks like:

x = (a cosµt+ b sinµt)v1

And as we plot this in the phase plane, we get nothing more than an ellipse.
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