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3.1 Introduction

Beginning with a polynomial f(x), there exists a finite extension of F which contains the roots of
f(x). Galois THeory aims to relate the group of permutations fo the roots of f to the algebraic
structure of its splitting field. In a similar way to representation theory, we study an object by
how it acts on another.

Definition: An isomorphism σ of K with itself is called an automorphism of K. The collection of
automorphism K is denoted Aut(K).

Definition: If F is a subset ofK (like a subfield), then an automorphism σ is said to fix F if it fixes
every element of F .

Note that any field has at least one automorphism: the identity map, called the trivial automor-
phism.

Note that the prime subfield is generated by 1, and since any automorphism sends 1 to 1, any
automorphism of a field fixes its prime subfield. For example, Q and Fp have only the trivial
automorphism.

Definition: Let K/F be an extension of fields. Then, Aut(K/F ) is the collection of automor-
phisms of K which fix F .

Note that the above discussion gives us that Aut(K) = Aut(K/F ), if F is the prime subfield.
Note that under composition, there is a group structure on automorphisms.

Proposition 1

Aut(K) is a group under composition and Aut(K/F ) is a subgroup.

Proposition 2

Let K/F be a field extension, and α ∈ K algebraic over F . Then for any σ ∈
Aut(K/F ), σα is a root of the minimal polynomial for α. In other words, Aut(K/F )
permutes the roots of irreducible polynomials.

Suppose that α satisfies the equation:

αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0

Where ci ∈ F . Then apply the automorphism σ to obtain:

(σα)n + cn−1(σα)
n−1 + · · ·+ c0 = 0

And thus, σα is a root of the same polynomial over F as α.

In general, if K is generated over F by some elements, then an automorphism is completely
determined by its action on the generators.

In particular, if K/F is finite, then it is finitely generated over F by algebraic elements. In this
case, the number of automorphisms fixing F is finite, and Aut(K/F ) is a finite group. In this
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case, the automorphisms of a finite extension are permutations of the roots of a finite number
of equations (though not every permutation necessarily gives an automorphism).

We have described a field associated to each extension; we now reverse the process.

Proposition 3

Let H ≤ Aut(K) be a subgroup of Aut(K). The collection of all elements F of K
which are fixed by H is a subfield.

This follows from readily from the definition of an field isomorphism.

Note here that we do not necessarily need a subgroup, but just a subset of K.

Proposition 4

The above association is inclusion reversing: - If F1 ⊆ F2 ⊆ K then Aut(K/F2) ≤
Aut(K/F1). - If H1 ≤ H2 ≤ Aut(K) are two subgroups of automorphisms with fixed
fields F1 and F2 then F2 ⊆ F1.

It maybe should be clear here that we are heading towards a bijection of some sort. We begin
by investigating the size of the automorphism group of a splitting field.

Let F be a field and let E be the splitting field over F of f(x). We know that we can extend an
isomorphism φ : F → F ′ to an isomorphism σ : E → E′, where E′ is the splitting field over F ′ of
f ′(x).

We now show that the number of such extensions is at most [E : F ], with equality if f is separable
over F . We proceed by induction. If [E : F ] = 1, then E = F and there is only one extension
(the identity).

If [E : F ] > 1, then f(x) has at least one irreducible factor p(x) of degree greater than 1 which
maps to p′(x). Fix α, a root of p(x). Then, if σ is any extension of φ to E, then σ restricted to
F (α) is an isomorphism τ which maps F (α) to F ′(β), where β is a root of p′(x). We have the two
extensions:

σ : E → E′

τ : F (α) → F ′(β)

φ : F → F ′

Now conversely, say β is a root of p′(x). Then we can by the same process construct such a
diagram.

Counting the number of extensions σ of φ is now counting the number of diagrams.

To extend φ to τ is to count the number of distinct roots β of p′(x). Since p(x) and p′(x) both
have degree [F (α) : F ], the number of extensions of φ to τ is at most [F (α) : F ], with equality if
the roots are distinct.

Now, since E is the splitting field of f over F (α) and E′ is the splitting field of f ′ over F ′(β), and
by hypothesis [E : F (α)] < [E : F ], we apply the induction hypothesis to say that the number of
extensions of τ to σ is at most [E : F (α)], with equality if f has distinct roots.
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Finally, since [E : F ] = [E : F (α)][F (α) : F ], it follows that the number of extensions of φ to σ is
at most [E : F ], with equality if f(x) has distinct roots.

In particular, when F = F ′ and φ is the identity map, the isomorphisms σ are exactly the auto-
morphisms of E fixing F .

Corollary 1

Let E be the splitting field over F of the polynomial f(x) ∈ F [x]. Then:

|Aut(E/F )| ≤ [E : F ]

With equality if f(x) is separable over F .

Therefore, the splitting field of a separable polynomial is exactly the ``bijective'' correspondence
we are looking for, in which [E : F ] = |Aut(E/F )|.

Definition: Let K/F be a finite extension. Then K is said to be Galois over F and K/F is a
Galois extension if |Aut(E/F )| = [K : F ]. The group of automorphisms is called the Galois
group of K/F , denoted Gal(K/F ).

Corollary 2

If K is the splitting field over F of a separable polynomial f(x) then K/F is Galois.

We will see that the converse is also true.

Note also that this tells us that the splitting field of any polynomial over Q is Galois, since the
splitting field of a polynomial is the same as the one obtained by removingmultiple factors, which
is separable.

Definition: If f(x) is a separable polynomial over F , then the Galois group of f over F is the
Galois group of the spliting field of f(x) over F .

3.2 The Fundamental Theorem of Galois Theory

Definition: A character of a group G with values in a field L is a homomorphism from G to the
multiplicative group L×.

Definition: The characters χ1, χ2, . . . , χn are linearly independent if they are linearly independent
functions on G.

Theorem 1

If χ1, χ2, . . . , χn are distinct characters of G, then they are linearly independent.

Now, consider an injective homomorphism σ of a field K into a field L, which is called an em-
bedding of K into L. In particular, σ can be viewed as a character of K× with values in L.
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Corollary 3

If σ1, . . . , σn are distinct embeddings of K into L, then they are linearly independent
as functions on K. In particular, the distinct automorphisms of a field K are linearly
independent as functions on K.

Theorem 2

Let G = σ1, . . . σn be a subgroup of automorphisms of a field K and let F be its fixed
field. Then:

[K : F ] = n = |G|

This proof will be omitted; it follows from analyzing systems of equations.

Corollary 4

Let K/F be any finite extension. Then:

|Aut(K/F )| ≤ [K : F ]

With equality iff F is the fixed field of Aut(K/F ). This tells us that K/F is Galois iff
F is the fixed field of Aut(K/F ).

To prove this, let F1 be the fixed field of Aut(K/F ). In other words:

F ⊆ F1 ⊆ K

By Theorem 2, we have:

[K : F1] = |Aut(K/F )|

Hence, we have:

[K : F ] = |Aut(K/F )|[F1 : F ]

And this proves the corollary.

Corollary 5

Let G be a finite subgroup of automorphisms of a field K and let F be its fixed field.
Then every automorphism of K fixing F is contained in G, i.e.:

Aut(K/F ) = G

Therefore, K/F is Galois, with Galois group G.

5



Note that by definition G ≤ Aut(K/F ). But by the theorem we have |G| = [K : F ]. By the
previous corollary we have |Aut(K/F )| ≤ [K : F ] = |G|. This gives:

[K : F ] ≤ |Aut(K/F )| ≤ [K : F ]

And therefore, if we have a subgroup of automorphisms, then K is a Galois extension over its
fixed field.

Corollary 6

If G1 ̸= G2 are distinct finite subgroups of automorphisms of a field K, then their
fixed fields are also distinct.

If the fixed fields F1 = F2, then by definition F1 is fixed by G2. But then G2 ̸= G1, and similarly
G1 ≤ G2 adn thus the two groups are equal.

The corollaries above tell us that taking fixed field for distinct finite subgroups of Aut(K) gives
distinct subfields of K over which K is Galois. The degrees of the extensions are given by the
orders of the subgroups.

The next result completely characterizes Galois extensions.

Theorem 3

The extension K/F is Galois iff K is the splitting field of some separable polynomial
over F . If this is the case then every irreducible polynomial with coefficients in F which
has a root in K is separable and has all its roots in K (K/F is in particular separable).

We showed earlier that the splitting field of a separable polynomial is Galois. We now show,
essentially, the converse.

Let G = Gal(K/F ) and let α ∈ K be a root of p(x), an irreducible polynomial in F [x] which has
a root in K. Consider the elements:

α, σ2(α), . . . , σn(α) ∈ K

Where σi represent the elements of the Galois group. Of this list, denote the distinct elements
by:

α, α2, . . . , αr

If τ ∈ G then since G is a group applying τ to the first list just permutes it. In particular, teh
following polynomial has coefficients which are fixed by all the elements of G:

f(x) = (x− α)(x− α2) . . . (x− αr)

The coefficients thus lie in the fixed field of G. However, note thatK/F is Galois iff F is the fixed
field of Aut(K/F ), so the fixed field of G is exactly F . Thus, f(x) ∈ F [x].
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Since p(x) is irreducible and has α as a root, p(x) is the minimal polynomial for α over F , and it
follows that p(x) divides f(x) in F [x]. So we have:

p(x) = f(x)

This shows that p(x) is separable and all its roots lie in K.

To complete the proof, supposeK/F is Galois and let ω1, . . . , ωn be a basis forK/F . let pi(x) be
the minimal polynomial for ωi. Then pi(x) is separable and has all its roots in K. Let g(x) be the
polynomial obtained by removing multiple factors in this product. Then the splitting field of the
two polynomials is the same and this field is K. Hence, K is the splitting field of the separable
polynomial g(x).

Definition: Let K/F be a Galois extension. If α ∈ K then the elements σα for σ ∈ Gal(K/F )
are called the Galois conjugates of α over F . If E is a subfield of K containing F , the field σ(E)
is called the conjugate field of E over F .

The proof of Theorem 3 shows that in a Galois extension K/F , if we have α ∈ K which is a root
of a minimal polynomial over F , then the other roots are precisely the distinct conjugates of α
under the Galois group of K/F .

The theorem also says that K is not Galois over F if we can find an irreducible polynomial over
F which has a root in K but not all its roots in K. Now we have four characterizations of Galois
extensions K/F :

• Splitting fields of separable polynomials over F .

• Fields where F is precisely the fixed field of Aut(K/F ) (in general, the fixed field may be
larger than F ).

• Fields with [K : F ] = |Aut(K/F )|.

• Finite, normal, and separable extensions.

Theorem (Fundamental Theorem of Galois Theory)

Let K/F be a Galois extension and let G = Gal(K/F ). Then there is a bijection
between subfields:

F ⊆ E ⊆ K

And subgroups of the Galois group:

1 ⊆ H ⊆ G

In particular, the correspondence identifies E to the elements of G which fix E. Con-
versely, it identifies H with the fixed field of H. - The correspondence is inclusion
reversing. - [K : E] = |H|, and [E : F ] = [G : H]. - K/E is always Galois, with Galois
group Gal(K/E) = H. - E is Galois over F iff H is a normal subgroup in G. If this
is the case then Gal(E/F ) ∼= G/H. More generally, the isomorphisms of E which
fix F correspond with cosets of H in G. - If E1, E2 correspond to H1,H2, then the
intersection E1 ∩E2 corresponds to the group generated by H1,H2. The composite
field E1E2 corresponds to the intersection H1 ∩H2.
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We will number these points 1 through 5 and prove each separately.

Part 1

Given any subgroup H of G, we saw that there is a unique fixed field E = KH . The correspon-
dence is thus injective from subgroups to subfields. We now need to see that it is surjective,
i.e. we can find a subgroup of the Galois group which fixes any subfield.

Now, ifK is the splitting field of a separable polynomial f(x) ∈ F [x] then it is an element of E[x]
for any subfield F ⊆ E ⊆ K. Thus, K is also the splitting field of f over E, and therefore K/E is
Galois. Thus, E is the fixed field of Aut(K/E) ≤ G. This shows that indeed our correspondence
is bijective. Concretely, the automorphisms fixing E are precisely Aut(K/E) sinceK/E is Galois.

The Galois correspondence is evidently inclusion reversing.

Part 2 If E = KH is the fixed field ofH (which is Galois), then by Theorem 2 [K : E] = |H|, and
similarly [K : F ] = |G|. Taking the quotient gives [E : F ] = [G : H].

Part 3 Since E is the fixed field of a subgroupH ≤ G, by Corollary 5,K/E is Galois with Galois
group Gal(K/E) = H.

Part 4

Lemma

Let E be the fixed field of a subgroup H. Then σ is an embedding of E iff it is the
restriction of some automorphism σ ∈ G to E.

Let E = KH be the fixed field of the subgroupH. Then every σ ∈ G, when restricted to E, gives
an embedding of E with a subfield σ(E) of K. We shall show that these are indeed the only
embeddings of E.

Conversely, let τ : E → τ(E) ⊆ F be any embedding of E (into a fixed algebraic closure F
containing K) which fixes F . Then, if α ∈ E has minimal polynomial mα over F then τ(α) is
another root of mα(x) and so K contains τ(α) as well. Thus, τ(E) ⊆ K.

As above,K is the splitting field of f(x) over E and so it is also the splitting field of τf(x) = f(x)
(since τ fixes F ) over τ(E).

So, we can extend τ to an isomorphism σ fromK toK. Since σ fixes F , what we have just shown
is that every embedding τ of E fixing F can be extended to an automorphism σ of K fixing F .
In other words, every embedding of E is the action of some σ ∈ G.

Proof

Now, two automorphisms σ, σ′ ∈ G restrict to the same embedding of E iff σ−1σ′ is the identity
on E. But then σ−1σ′ ∈ H since the automorphisms of K which fix E are exactly H. Another
way of saying this is that σ′ ∈ σH.

What we have just shown is that distinct embeddings of E are in bijection with cosets σH of H
in G. In particular, this gives us that:

|Emb(E/F )| = [G : H] = [E : F ]
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Where Emb denotes the set of embeddings of E into a fixed algebraic closure of F . Note
that Emb(E/F ) contains the automorphisms Aut(E/F ), since any automorphism admits to an
embedding by our lemma.

The extension E/F is Galois iff |Aut(E/F )| = [E : F ]. By the equality above, this is the case iff
each embedding of E is an automorphism of E, i.e. σ(E) = E.

Now note that if σα ∈ σ(E), then:

(σhσ−1)(σα) = σ(hα) = σα

For any α ∈ E, since H fixes E. Thus σHσ−1 fixes σ(E). The group fixing σ(E) has order equal
to [K : σ(E)] = [K : E] = |H|H, so indeed σHσ−1 is precisely the group fixing σ(E) = E.

Because the Galois correspondence is a bijection, σHσ−1 = H and hence H is normal. Thus, E
is Galois over F iff H is normal in G.

Furthermore, this proof shows that the group of cosets G/H is identified with the group of
automorphisms of the Galois extension E/F . Thus, G/H ∼= Gal(E/F ).

Part 5

Suppose H1 is the subgroup of elements fixing E1 and H2 the subgroup of elements fixing E2.
Then any element in H1 ∩H2 fixes both E1 and E2 and hence fixes the composite. Conversely,
if an automorphism σ fixes the composite E1E2, then in particular σ ∈ H1 ∩ H2. Similarly, the
intersection E1∩E2 corresponds to the subgroup generated byH1,H2, and this proves the final
part.
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