Galois Theory, Part 1: The Fundamental Theorem of Galois Theory *Jay Havaldar*

3.1 Introduction

Beginning with a polynomial $f(x)$, there exists a finite extension of F which contains the roots of *f*(*x*). Galois THeory aims to relate the group of permutations fo the roots of *f* to the algebraic structure of its splitting field. In a similar way to representation theory, we study an object by how it acts on another.

Definition: An isomorphism *σ* of *K* with itself is called an automorphism of *K*. The collection of automorphism *K* is denoted *Aut*(*K*).

Definition: If *F* is a subset of *K* (like a subfield), then an automorphism σ is said to fix *F* if it fixes every element of *F*.

Note that any field has at least one automorphism: the identity map, called the trivial automorphism.

Note that the prime subfield is generated by 1, and since any automorphism sends 1 to 1, any automorphism of a field fixes its prime subfield. For example, Q and F*^p* have only the trivial automorphism.

Definition: Let *K*/*F* be an extension of fields. Then, *Aut*(*K*/*F*) is the collection of automorphisms of *K* which fix *F*.

Note that the above discussion gives us that $Aut(K) = Aut(K/F)$, if *F* is the prime subfield. Note that under composition, there is a group structure on automorphisms.

Proposition 1

 $Aut(K)$ is a group under composition and $Aut(K/F)$ is a subgroup.

Proposition 2

Let K/F be a field extension, and $\alpha \in K$ algebraic over *F*. Then for any $\sigma \in$ *Aut*(*K*/*F*), *σα* is a root of the minimal polynomial for *α*. In other words, $Aut(K/F)$ permutes the roots of irreducible polynomials.

Suppose that *α* satisfies the equation:

 $\alpha^{n} + c_{n-1}\alpha^{n-1} + \cdots + c_1\alpha + c_0 = 0$

Where $c_i \in F$. Then apply the automorphism σ to obtain:

$$
(\sigma\alpha)^n + c_{n-1}(\sigma\alpha)^{n-1} + \cdots + c_0 = 0
$$

And thus, *σα* is a root of the same polynomial over *F* as *α*.

In general, if *K* is generated over *F* by some elements, then an automorphism is completely determined by its action on the generators.

In particular, if *K*/*F* is finite, then it is finitely generated over *F* by algebraic elements. In this case, the number of automorphisms fixing *F* is finite, and *Aut*(*K*/*F*) is a finite group. In this case, the automorphisms of a finite extension are permutations of the roots of a finite number of equations (though not every permutation necessarily gives an automorphism).

We have described a field associated to each extension; we now reverse the process.

Proposition 3

Let $H \leq Aut(K)$ be a subgroup of $Aut(K)$. The collection of all elements F of K which are fixed by *H* is a subfield.

This follows from readily from the definition of an field isomorphism.

Note here that we do not necessarily need a subgroup, but just a subset of *K*.

Proposition 4

The above association is inclusion reversing: - If $F_1 \subseteq F_2 \subseteq K$ then $Aut(K/F_2) \subseteq$ $Aut(K/F_1)$. - If $H_1 \leq H_2 \leq Aut(K)$ are two subgroups of automorphisms with fixed fields F_1 and F_2 then $F_2 \subset F_1$.

It maybe should be clear here that we are heading towards a bijection of some sort. We begin by investigating the size of the automorphism group of a splitting field.

Let *F* be a field and let *E* be the splitting field over *F* of $f(x)$. We know that we can extend an $\phi: F \to F'$ to an isomorphism $\sigma: E \to E'$, where E' is the splitting field over F' of $f'(x)$.

We now show that the number of such extensions is at most [*E* : *F*], with equality if *f* is separable over *F*. We proceed by induction. If $[E : F] = 1$, then $E = F$ and there is only one extension (the identity).

If $[E : F] > 1$, then $f(x)$ has at least one irreducible factor $p(x)$ of degree greater than 1 which α maps to $p'(x)$. Fix α , a root of $p(x)$. Then, if σ is any extension of φ to E , then σ restricted to *F*(α) is an isomorphism τ which maps $F(\alpha)$ to $F'(\beta)$, where β is a root of $p'(x).$ We have the two extensions:

$$
\sigma: E \to E'
$$

$$
\tau: F(\alpha) \to F'(\beta)
$$

$$
\varphi: F \to F'
$$

Now conversely, say β is a root of $p'(x).$ Then we can by the same process construct such a diagram.

Counting the number of extensions σ of φ is now counting the number of diagrams.

To extend *φ* to *τ* is to count the number of distinct roots *β* of *p ′* (*x*). Since *p*(*x*) and *p ′* (*x*) both have degree $[F(\alpha): F]$, the number of extensions of φ to τ is at most $[F(\alpha): F]$, with equality if the roots are distinct.

Now, since E is the splitting field of f over $F(\alpha)$ and E' is the splitting field of f' over $F'(\beta)$, and by hypothesis $[E: F(\alpha)] < [E:F]$, we apply the induction hypothesis to say that the number of extensions of τ to σ is at most $[E : F(\alpha)]$, with equality if f has distinct roots.

Finally, since $[E : F] = [E : F(\alpha)][F(\alpha) : F]$, it follows that the number of extensions of φ to σ is at most $[E : F]$, with equality if $f(x)$ has distinct roots.

In particular, when $F=F'$ and φ is the identity map, the isomorphisms σ are exactly the automorphisms of *E* fixing *F*.

Corollary 1

Let *E* be the splitting field over *F* of the polynomial $f(x) \in F[x]$. Then:

$$
|Aut(E/F)| \leq [E:F]
$$

With equality if $f(x)$ is separable over F .

Therefore, the splitting field of a separable polynomial is exactly the ``bijective'' correspondence we are looking for, in which $[E : F] = |Aut(E/F)|$.

Definition: Let *K*/*F* be a finite extension. Then *K* is said to be **Galois** over *F* and *K*/*F* is a Galois extension if $|Aut(E/F)| = [K : F]$. The group of automorphisms is called the Galois group of *K*/*F*, denoted *Gal*(*K*/*F*).

Corollary 2

If *K* is the splitting field over *F* of a separable polynomial $f(x)$ then K/F is Galois.

We will see that the converse is also true.

Note also that this tells us that the splitting field of any polynomial over Q is Galois, since the splitting field of a polynomial is the same as the one obtained by removing multiple factors, which is separable.

Definition: If $f(x)$ is a separable polynomial over F, then the Galois group of f over F is the Galois group of the spliting field of *f*(*x*) over *F*.

3.2 The Fundamental Theorem of Galois Theory

Definition: A character of a group *G* with values in a field *L* is a homomorphism from *G* to the multiplicative group *L ×*.

Definition: The characters $\chi_1, \chi_2, \ldots, \chi_n$ are linearly independent if they are linearly independent functions on *G*.

Theorem 1

If $\chi_1, \chi_2, \ldots, \chi_n$ are distinct characters of *G*, then they are linearly independent.

Now, consider an injective homomorphism *σ* of a field *K* into a field *L*, which is called an embedding of *K* into *L*. In particular, *σ* can be viewed as a character of *K[×]* with values in *L*.

Corollary 3

If $\sigma_1, \ldots, \sigma_n$ are distinct embeddings of *K* into *L*, then they are linearly independent as functions on *K*. In particular, the distinct automorphisms of a field *K* are linearly independent as functions on *K*.

Theorem 2

Let $G = \sigma_1, \ldots, \sigma_n$ be a subgroup of automorphisms of a field *K* and let *F* be its fixed field. Then:

$$
[K:F]=n=\left\vert G\right\vert
$$

This proof will be omitted; it follows from analyzing systems of equations.

Corollary 4

Let *K*/*F* be any finite extension. Then:

$$
|Aut(K/F)| \leq [K:F]
$$

With equality iff *F* is the fixed field of *Aut*(*K*/*F*). This tells us that *K*/*F* is Galois iff *F* is the fixed field of *Aut*(*K*/*F*).

To prove this, let *F*¹ be the fixed field of *Aut*(*K*/*F*). In other words:

$$
F \subseteq F_1 \subseteq K
$$

By Theorem 2, we have:

$$
[K:F_1] = |Aut(K/F)|
$$

Hence, we have:

$$
[K:F] = |Aut(K/F)| [F_1:F]
$$

And this proves the corollary.

Corollary 5

Let *G* be a finite subgroup of automorphisms of a field *K* and let *F* be its fixed field. Then every automorphism of *K* fixing *F* is contained in *G*, i.e.:

$$
Aut(K/F) = G
$$

Therefore, *K*/*F* is Galois, with Galois group *G*.

Note that by definition $G \leq Aut(K/F)$. But by the theorem we have $|G| = [K : F]$. By the previous corollary we have $|Aut(K/F)| \leq |K : F| = |G|$. This gives:

$$
[K:F] \le |Aut(K/F)| \le [K:F]
$$

And therefore, if we have a subgroup of automorphisms, then *K* is a Galois extension over its fixed field.

Corollary 6

If $G_1 \neq G_2$ are distinct finite subgroups of automorphisms of a field *K*, then their fixed fields are also distinct.

If the fixed fields $F_1 = F_2$, then by definition F_1 is fixed by G_2 . But then $G_2 \neq G_1$, and similarly $G_1 \leq G_2$ adn thus the two groups are equal.

The corollaries above tell us that taking fixed field for distinct finite subgroups of *Aut*(*K*) gives distinct subfields of *K* over which *K* is Galois. The degrees of the extensions are given by the orders of the subgroups.

The next result completely characterizes Galois extensions.

Theorem 3

The extension *K*/*F* is Galois iff *K* is the splitting field of some separable polynomial over *F*. If this is the case then every irreducible polynomial with coefficients in *F* which has a root in *K* is separable and has all its roots in *K* (*K*/*F* is in particular separable).

We showed earlier that the splitting field of a separable polynomial is Galois. We now show, essentially, the converse.

Let $G = Gal(K/F)$ and let $\alpha \in K$ be a root of $p(x)$, an irreducible polynomial in $F[x]$ which has a root in *K*. Consider the elements:

$$
\alpha, \sigma_2(\alpha), \ldots, \sigma_n(\alpha) \in K
$$

Where σ_i represent the elements of the Galois group. Of this list, denote the distinct elements by:

$$
\alpha, \alpha_2, \ldots, \alpha_r
$$

If *τ ∈ G* then since *G* is a group applying *τ* to the first list just permutes it. In particular, teh following polynomial has coefficients which are fixed by all the elements of *G*:

$$
f(x) = (x - \alpha)(x - \alpha_2)\dots(x - \alpha_r)
$$

The coefficients thus lie in the fixed field of *G*. However, note that *K*/*F* is Galois iff *F* is the fixed field of $Aut(K/F)$, so the fixed field of *G* is exactly *F*. Thus, $f(x) \in F[x]$.

Since $p(x)$ is irreducible and has α as a root, $p(x)$ is the minimal polynomial for α over F, and it follows that $p(x)$ divides $f(x)$ in $F[x]$. So we have:

$$
p(x) = f(x)
$$

This shows that *p*(*x*) is separable and all its roots lie in *K*.

To complete the proof, suppose K/F is Galois and let $\omega_1, \ldots, \omega_n$ be a basis for K/F . let $p_i(x)$ be the minimal polynomial for $\omega_i.$ Then $p_i(x)$ is separable and has all its roots in $K.$ Let $g(x)$ be the polynomial obtained by removing multiple factors in this product. Then the splitting field of the two polynomials is the same and this field is *K*. Hence, *K* is the splitting field of the separable polynomial *g*(*x*).

Definition: Let K/F be a Galois extension. If $\alpha \in K$ then the elements $\sigma \alpha$ for $\sigma \in Gal(K/F)$ are called the Galois conjugates of α over *F*. If *E* is a subfield of *K* containing *F*, the field $\sigma(E)$ is called the conjugate field of *E* over *F*.

The proof of Theorem 3 shows that in a Galois extension K/F , if we have $\alpha \in K$ which is a root of a minimal polynomial over *F*, then the other roots are precisely the distinct conjugates of *α* under the Galois group of *K*/*F*.

The theorem also says that *K* is not Galois over *F* if we can find an irreducible polynomial over *F* which has a root in *K* but not all its roots in *K*. Now we have four characterizations of Galois extensions *K*/*F*:

- Splitting fields of separable polynomials over *F*.
- Fields where *F* is precisely the fixed field of *Aut*(*K*/*F*) (in general, the fixed field may be larger than *F*).
- Fields with $[K : F] = |Aut(K/F)|$.
- Finite, normal, and separable extensions.

Theorem (Fundamental Theorem of Galois Theory)

Let K/F be a Galois extension and let $G = Gal(K/F)$. Then there is a bijection between subfields:

$$
F \subseteq E \subseteq K
$$

And subgroups of the Galois group:

 $1 \subseteq H \subseteq G$

In particular, the correspondence identifies *E* to the elements of *G* which fix *E*. Conversely, it identifies *H* with the fixed field of *H*. - The correspondence is inclusion reversing. \cdot $[K : E] = |H|$, and $[E : F] = [G : H]$. \cdot K/E is always Galois, with Galois group $Gal(K/E) = H$. - *E* is Galois over *F* iff *H* is a normal subgroup in *G*. If this is the case then $Gal(E/F) \cong G/H$. More generally, the isomorphisms of *E* which fix *F* correspond with cosets of *H* in *G*. - If E_1, E_2 correspond to H_1, H_2 , then the intersection $E_1 \cap E_2$ corresponds to the group generated by H_1, H_2 . The composite field E_1E_2 corresponds to the intersection $H_1 \cap H_2$.

We will number these points 1 through 5 and prove each separately.

Part 1

Given any subgroup *H* of *G*, we saw that there is a unique fixed field $E = K_H$. The correspondence is thus injective from subgroups to subfields. We now need to see that it is surjective, i.e. we can find a subgroup of the Galois group which fixes any subfield.

Now, if *K* is the splitting field of a separable polynomial $f(x) \in F[x]$ then it is an element of $E[x]$ for any subfield $F \subseteq E \subseteq K$. Thus, K is also the splitting field of f over E , and therefore K/E is Galois. Thus, *E* is the fixed field of $Aut(K/E) \leq G$. This shows that indeed our correspondence is bijective. Concretely, the automorphisms fixing *E* are precisely *Aut*(*K*/*E*) since *K*/*E* is Galois.

The Galois correspondence is evidently inclusion reversing.

Part 2 If $E = K_H$ is the fixed field of *H* (which is Galois), then by Theorem 2 $[K : E] = |H|$, and similarly $[K : F] = |G|$. Taking the quotient gives $[E : F] = [G : H]$.

Part 3 Since *E* is the fixed field of a subgroup $H \leq G$, by Corollary 5, K/E is Galois with Galois group $Gal(K/E) = H$.

Part 4

Lemma

Let *E* be the fixed field of a subgroup *H*. Then σ is an embedding of *E* iff it is the restriction of some automorphism $\sigma \in G$ to *E*.

Let $E = K_H$ be the fixed field of the subgroup *H*. Then every $\sigma \in G$, when restricted to *E*, gives an embedding of *E* with a subfield $\sigma(E)$ of *K*. We shall show that these are indeed the only embeddings of *E*.

Conversely, let $\tau : E \to \tau(E) \subseteq \overline{F}$ be any embedding of *E* (into a fixed algebraic closure \overline{F} containing *K*) which fixes *F*. Then, if $\alpha \in E$ has minimal polynomial m_{α} over *F* then $\tau(\alpha)$ is another root of $m_\alpha(x)$ and so *K* contains $\tau(\alpha)$ as well. Thus, $\tau(E) \subseteq K$.

As above, *K* is the splitting field of $f(x)$ over *E* and so it is also the splitting field of $\tau f(x) = f(x)$ (since τ fixes *F*) over $\tau(E)$.

So, we can extend *τ* to an isomorphism *σ* from *K* to *K*. Since *σ* fixes *F*, what we have just shown is that every embedding τ of *E* fixing *F* can be extended to an automorphism σ of *K* fixing *F*. In other words, every embedding of *E* is the action of some $\sigma \in G$.

Proof

Now, two automorphisms $\sigma, \sigma' \in G$ restrict to the same embedding of *E* iff $\sigma^{-1}\sigma'$ is the identity on *E*. But then $\sigma^{-1}\sigma' \in H$ since the automorphisms of *K* which fix *E* are exactly *H*. Another way of saying this is that $\sigma' \in \sigma H$.

What we have just shown is that distinct embeddings of *E* are in bijection with cosets *σH* of *H* in *G*. In particular, this gives us that:

$$
|\mathsf{Emb}(E/F)| = [G:H] = [E:F]
$$

Where Emb denotes the set of embeddings of *E* into a fixed algebraic closure of *F*. Note that Emb(*E*/*F*) contains the automorphisms *Aut*(*E*/*F*), since any automorphism admits to an embedding by our lemma.

The extension E/F is Galois iff $|Aut(E/F)| = [E : F]$. By the equality above, this is the case iff each embedding of *E* is an automorphism of *E*, i.e. $\sigma(E) = E$.

Now note that if $\sigma \alpha \in \sigma(E)$, then:

$$
(\sigma h \sigma^{-1})(\sigma \alpha) = \sigma(h \alpha) = \sigma \alpha
$$

For any $\alpha \in E$, since *H* fixes *E*. Thus $\sigma H \sigma^{-1}$ fixes $\sigma(E)$. The group fixing $\sigma(E)$ has order equal σ $[K : \sigma(E)] = [K : E] = |H|H$, so indeed $\sigma H \sigma^{-1}$ is precisely the group fixing $\sigma(E) = E$.

Because the Galois correspondence is a bijection, $\sigma H \sigma^{-1} = H$ and hence *H* is normal. Thus, *E* is Galois over *F* iff *H* is normal in *G*.

Furthermore, this proof shows that the group of cosets *G*/*H* is identified with the group of automorphisms of the Galois extension E/F . Thus, $G/H \cong Gal(E/F)$.

Part 5

Suppose H_1 is the subgroup of elements fixing E_1 and H_2 the subgroup of elements fixing E_2 . Then any element in $H_1 \cap H_2$ fixes both E_1 and E_2 and hence fixes the composite. Conversely, if an automorphism σ fixes the composite E_1E_2 , then in particular $\sigma \in H_1 \cap H_2$. Similarly, the intersection $E_1 \cap E_2$ corresponds to the subgroup generated by H_1, H_2 , and this proves the final part.