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2.1 Splitting Fields

As we saw, if f(x) is any polynomial in F [x], then there exists an extension K of F in which f(x)
has a root α. Equivalently, f has a factor x− α in K[x]. This motivates the following definition.

Definition: An extension K of F is called a splitting field for the polynomial f(x) ∈ F [x] if f
factors completely into linear factors in K[x], but does not factor completely over any proper
subfield of K containing F .

Theorem 1

For any field F and f(x) ∈ F [x], there exists a splitting field for f(x).

We proceed by induction on the degree n of f . If n = 1, E = F is a splitting field.

If not, then f either splits completely (E = F again), or else it has a reducible factor p(x) of
degree at least 2. In Part 1, we showed there is an extension E1 of F containing a root α of p(x).
Thus, in E1, f(x) has an irreducible factor of degree at most n− 1.

By induction, there exists an extension E of E1 containing all the roots of f(x) other than α.
Since α ∈ E1 ⊆ E, E is an extension of F in which f(x) splits completely. Now, let K be the
intersection of all subfields of E which contain F and also all the roots of f(x); K is the splitting
field.

We use the terminology ``the'' splitting field; indeed we shall show it is unique.

Definition: If K is an algebraic extension of F which is a splitting field over F for a collection of
polynomials in F [x], then K is called a normal extension of F .

``Splitting field'' and ``normal extension'' are used more or less interchangeably.

Proposition 1

A splitting field of a polynomial of degree n over F is of degree at most n! over F

We can adjoin one root of f(x) to generate an extension of degree at most n (equal iff f is
irreducible). Over this field, f(x) has at least one linear factor. Thus, adjoining another root
yields an extension of degree at most n − 1. By the multiplicativity of extension degrees, the
result follows.

Example: Cyclotomic Fields An important example that will be studied later is that of a cyclo-
tomic field. We consider the splitting field of the polynomial:

xn − 1

Over Q. The roots are called the nth roots of unity. With multiplication, they form a cyclic group;
indeed this group is precisely Z/nZ.

Definition: A primitive nth root of unity is a generator for the cyclic group of all nth roots of
unity
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We use ζn to denote a primitive nth root of unity. Evidently, ζan is also a primitive root, if a is
relatively prime to n.

Since ζn generates this entire group, xn − 1 splits completely over the field Q(ζn).

Definition: The field Q(ζn) is called the cyclotomic field of nth roots of unity.

A particular case is when n = p is prime. Then the factorizatino is given by:

xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1)

And the latter term (denoted Φp) is irreducible, which follows from substituting in (x + 1) for x
and using Eisenstein's Criterion. Thus, we have that Φp is the minimal polynomial of ζp over the
rationals, so that:

[Q(ζp) : Q] = p− 1

Next, we show that indeed the splitting field is unique.

Theorem 2

Let φ : F → F ′ be an isomorphism of fields. Let f(x) ∈ F [x] and denote its image
under φ as f ′(x) (obtained by applying φ to the coefficients).

Let E be a splitting field for f(x) over F ; let E′ be a splitting field for f ′(x) over F ′.
Then we can extend φ to an isomorphism σ : E → E′.

We proceed by induction on n, the degree of f(x). If f(x) splits completely in F , then f ′(x) splits
completely in F ′, and we are done.

Now, assume that p(x) is an irreducible factor of f(x) which has degree at least 2. Let p′(x) be
the image in F ′(x). Then if α ∈ E is a root of p(x) and β ∈ E′ is a root of p′(x), then by Part 1
Theorem 3, we can extend φ to an isomorphism σ′:

σ′ : F (α) → F ′(β)σ′ : α 7→ β

Denote F1 = F (α) and F ′
1 = F ′(β); we have just constructed an isomorphism of fields σ′ : F1 →

F ′
1. Over F1, we can write:

f(x) = (x− α)f1(x)f
′(x) = (x− β)f ′

1(x)

Where each of f1, f ′
1 has degree n− 1.

Notice that E is a splitting field for f1 over F1; if f1 splits in any subfield, then we have found a
subfield of E in which f(x) splits. Similarly, E′ is a splitting for f ′

1 over F ′
1.

Thus, since f1, f
′
1 have degree n − 1, by induction there is a map σ : E → E′ which extends the

isomorphism σ′ : F1 → F ′
1.

Thus, we have shown that σ extends σ′ which in turn extends φ; thus we have extended an
isomorphism of fields to an isomorphism of splitting fields.
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Corollary

Any two splitting fields for f(x) ∈ F [x] over F are isomorphic.

Take the proof above and let φ be the identity from F to itself.

Now that we have looked at field extensions of F which contains the root of a particular polyno-
mial of degree n over F (which necessarily exist and have degree at most n!), we ask the question
of whether there is an extension of F which contains the roots of all polynomials over F . As you
might expect, there are going to be some Zorn's Lemma shenanigans.

Definition: F is called an algebraic closure of F if F is algebraic over F and if every polynomial
f(x) ∈ F [x] splits completely over F .

Thus, in a way F contains all the elements which are algebraic over F .

Definition: A field K is said to be algebraically closed if every polynomials with coefficients in
K has a root in K.

We'd better hope that algebraically closed fields exist (the complex numbers should be one).
We also should hope that algebraic closures exist for arbitrary fields. Finally, one should expect
that an algebraic closure is itself algebraically closed.

Proposition 2

Let F be an alegbraic closure of F . Then F is algebraically closed.

Let f(x) be a polynomial in F [x] with a root α. Then α generates an algebraic extension F (α)
of F . However, since F (α)/F is algebraic, and F/F is algebraic, F (α)/F is algebraic. But then
α ∈ F , since α is algebraic over F , so that F is algebraically closed.

Proposition 3

For a field F there exists an algebraically closed field K which contains F .

This proof is not too enlightening; continue at your own risk.

For each non-constant monic polynomial f with coefficients in F , we associate an indeterminate
xf . Let S denote the set of all such indeterminates; it is in bijection with the set of polynomials
in F [x] with degree at least 1.

F [S] = F [. . . , xf , . . . ]

In this polynomial ring, consider the ideal I generated by the polynomials f(xf ). We claim that
this is a proper ideal.

If the ideal is not proper, then in particular 1 is an element. So there exists a finite linear combi-
nation:

g1f1(xf1) + · · ·+ gnfn(xfn) = 1

Where each gi ∈ F [S]. For convenience, we denote xi instead of xfi . Finally, let xn+1, . . . xm

denote the remaining letters occuring in the polynomials gi. We can rewrite the above relation:
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g1(x1, . . . xm)f1(x1) + · · ·+ gn(x1, . . . , xm)fn(xn) = 1

Now, let F ′ be a (finite) extension of F which contains a root αi of each fi(x). Then if we let
xi = αi and set xn+1 = · · · = xm = 0, then the equation above reads 0 = 1, which is impossible.
Thus, the ideal above must be proper.

Since I is a proper ideal, it is contained in some maximal ideal M (Zorn's Lemma appears here).
Then the quotient:

K1 =
F [S]

M

Is a field which contains F . Furthermore, each of the polynomials f has a root in K1 by construc-
tion, since f(xf ) ∈ I and therefore the image of xf is a root.

We repeat this construction withK1 to obtain a fieldK2 in which all polynomials with coefficients
in K1 has a root. In this way, we get a sequence of fields:

F = K0 ⊆ K1 ⊆ · · · ⊆ Kj ⊆ Kj+1 ⊆ . . .

And each polynomial with coefficients in Kj has a root in Kj+1. Now, denote:

K =
∪
j≥0

Kj

K is a field which contains F and the cofficients of any polynomial in K lie in some field KN and
thus in K; thus the polynomial has a root in KN+1 ⊂ K. Thus, K is algebraically closed.

Proposition 4

Let K be an algebraically closed field and F a subfield of K. Then the collection of
elements F ofK that are algebraic over F is an algebraic closure of F . The algebraic
closure is unique up to isomorphism.

By definition, F is an algebraic extension of F . Furthermore, K contains all the roots of polyno-
mials with coefficients in F (indeed, with coefficients in K); so, in F [x] every polynomial in F [x]
splits completely; thus, F is an algebraic closure of F .

Thus, if we can locate a field F as a subfield of an algebraically closed field, then we create an
algebraic closure F by collecting all alements of K which are algebraic over F .

The uniqueness follows from the fact that the splitting field is unique up to isomorphism (and
Zorn's Lemma is involved, as you might expect).

Theorem 3 (Fundamental Theorem of Algebra)

The field C is algebraically closed.

This theorem will be proven later using Galois theory.
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Corollary

C contains an algebraic closure for any of its subfields. In particular, Q, the collection
of complex numbers which are algebraic over Q, is an algebraic closure of Q.

From the above theorem, we can think of any discussion of F as taking place in the context of the
(generally larger) field F . A composite of any collection of algebraic extensions can be viewed as
subfields of an algebraic closure. For example, in Q, all of the computation is ``really'' happening
in C.

2.2 Separable Extensions

Let F be a field and f(x) a polynomial. Over a splitting field we can write:

f(x) = (x− α1)
n1 . . . (x− αk)

nk

With αi all distinct roots.

Definition: A polynomial over F is called separable if its roots are all distinct; otherwise, a poly-
nomial is inseparable.

Note that since splitting fields are isomorphic, with an isomorphism that is bijective on the roots,
separability is in a sense an ``instrinsic'' property of polynomials irrespective of the splitting field.

Definition: The formal derivative of the polynomial:

f(x) = anx
n + · · ·+ a1x+ a0Df(x) = nanx

n−1 + · · ·+ a1

We're not actually taking derivatives here; there are no limits.

Proposition 5

A polynomial f(x) has a multiple root α iff α is also a root of Df(x). In particular, this
means that f(x) and Df(x) are both divisible by the minimal polynomial for α.

Suppose that α is a multiple root. Then over a splitting field:

f(x) = (x− α)ng(x)

Taking the derivative:

Df(x) = n(x− α)n−1g(x) + (x− α)nDg(x)

And so there is a common factor of (x− α) as desired.

This tells us that f is separable iff (f,Df) = 1.

Conversely, suppose that α is a root of both f and Df . Then we can write:
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f(x) = (x− α)h(x)

Taking the derivative yields:

Df(x) = h(x) + (x− α)Dh(x)

By assumption, Df(α) = 0; thus, h(α) = 0, and we are done.

Note that the above proof holds over arbitrary characteristic.

Corollary

Over a field of characteristic 0, a polynomial is separable iff it is the product of distinct
irreducibles. In particular, an irreducible polynomial is separable.

Suppose that p(x) is irreducible with degree n. Then the derivative has degree n− 1, and must
thus be relatively prime to p(x). Thus, p is separable. Note also that distinct irreducibles do not
have any zeroes in common (since if they did, both divide the minimal polynomial and one must
be a factor of the other).

However, in characteristic p, the derivative could simply have degree 0. For example:

D(xpm) = pmxpm−1 = 0

So, the above proof only works if we take an irreducible polynomial whose derivative is nonzero.

However, suppose the derivative of p(x) is zero. Then every exponent (from the above discussion)
must be a multiple of p, the characteristic of F . So:

p(x) = amxmp + am−1x
(m−1)p + · · ·+ a1x

p + a0

So indeed p(x) is a polynomial in xp.

Proposition 6

Let F be a field of characteristic p. Then:

(a+ b)p = ap + bp(ab)p = apbp

This follows from the binomial theorem. In particular, it tells us that φ(a) = ap is an
injective field homomorphism from F to F .

Definition: The map φ(a) = ap for a field of characteristic p is called the Frobenius endomor-
phism.
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Corollary

If F is a finite field of characteristic p, then the Frobenius map is an automorphism, i.e.
F = Fp.

Now, we return to the problem of locating irreducible polynomials over fields of characteristic p.

Proposition 7

Apolynomial over a finite field F is separable iff it is the product of distinct irreducibles.
An irreducible polynomial is separable.

Let F be a finite field and p(x) ∈ F[x] is irreducible. If p(x) is inseparable, then its derivative is
zero, so from above we can write p(x) = q(xp) for some polynomial q(x) ∈ F[x]. Then we let:

q(x) = amxm + · · ·+ a1x+ a0

By the Frobenius automorphism, we can denote ai = bpi . Thus we can write:

p(x) = q(xp) = am(xp)m + · · ·+ a1x
p + a0

= bpm(xp)m+ · · ·+ bp1x
p + bp0

= (bmxm)p + · · ·+ (b1x)
p + bp0

= (bmxm + bm−1x
m−1 + · · ·+ b1x+ b0)

p

And thus shows that p(x) is the pth power of a polynomial in F[x] and hence is not irreducible.

We generalize the concept of the Frobenius automorphism:

Definition: A field K of characteristic p is called perfect if K = Kp. Any field of characteristic 0
is called perfect.

As we showed, finite fields are perfect. With the above proof, we proved the more general
statement that irreducible polynomials over perfect fields are separable. If K is not perfect,
there are inseparable irreducible polynomials.

Example (Existence & Uniqueness of Finite Fields) The polynomial xpn −x over Fp has deriva-
tive:

pnxpn−1 − 1 = −1

Thus, the derivative has no roots at all. Therefore, this polynomial is separable.

Now, let n > 0 and consider the splitting field of the above polynomial. Since it is separable, it
has pn roots exactly. Now, let α, β be any two roots. Then:

(αβ)p
n

= αpn

βpn

= αβ(α+ β)p
n

= αpn

+ βpn

= α+ β(α−1)p
n

= α−1

Thus, the roots of this polynomial form a subfield of the splitting field; hence it must be the
splitting field. Finally, since the number of elements is pn, we must have:
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[F : Fp] = n

This shows the existence of finite fields of size pn. Now, we show uniqueness.

If F is a finite field of characteristic p, then we denote n = [F : Fp], i.e. the degree over its prime
subfield. Thus, F has exactly pn elements. Since the multiplicative group has order pn − 1, we
must have:

αpn−1 = 1

For any α ̸= 0 in F. Therefore, αpn

= α, and thus F is contained in the splitting field for xpn − x;
by counting considerations, F is indeed this splitting field, which is unique up to isomorphism.

We saw that if p(x) is irreducible over a field of characteristic p, then if it is not separable its
derivative is zero, hence p(x) = p1(x

p) for some polynomial p1(x). Continuing this process, there
is a unique power pk so that:

p(x) = pk(x
pk

)

Where pk has nonzero derivative.

Thus, if p is an irreducible polynomial over F with char. p, then there is a unique integer k ≥ 0
and a unique irreducible separable polynomial psep(x) ∈ F [x] such that:

p(x) = psep(x
pk

)

Definition: Suppose p is an irreducible polynomial over F with char. p. Then we call teh degree
of psep(x) the separable degree of p(x), and the integer pk is denoted the inseparable degree of
p(x).

Definition: A field K is separable over F is every element of K is the root of some separable
polynomial over F (or equivalently, if the minimal polynomial of every element is separable).

Corollary

Every finite extension of a perfect field is separable. In particular, every finite exten-
sion of Q or a finite field is separable.

As we saw before, every finite extension is algebraic. Furthermore, every algebraic element can
be realized as the root of some unique minimal polynomial which is irreducible. Finally, by the
above discussion, irreducible polynomials over perfect fields are separable.

2.3 Cyclotomic Polynomials and Extensions

We now prove that the cyclotomic extension discussed earlier:

Q(ζn)/Q
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Has degree exactly φ(n), where φ denotes the totient.

Definition: Let µn denote the group of nth roots of unity over Q.

As seen before, this is nothing more than the cyclic group of size n.

If d is a divisor of n, then we have:

µd ⊆ µn

Conversely, every element of µn has an order which is a divisor of n, and thus, we can write:

Definition: Define the nth cyclotomic polynomial Φn(x) to be the polynomial whose roots are
the primitive nth roots of unity. Then:

Φn(x) =
∏

ζ∈µn primitive
(x− ζ) =

∏
(a,n)=1 , 1≤a<n

(x− ζan)

The roots of the polynomial xn − 1 gives us the factorization:

xn − 1 =
∏
d|n

∏
ζ∈µd primitive

(x− ζ)

But the inner product is exactly Φd(x) so we can write:

xn − 1 =
∏
d|n

Φd(x)

And taking the degrees we get:

n =
∑
d|n

φ(d)

Now, we can compute Φn(x) recursively by dividing out the prior cyclotomic polynomials.

Lemma

Φn(x) is a monic polynomial in Z[x] with degree φ(n).

Theorem 4

The cyclotomic polynomial Φn(x) is an irreducible monic polynomial in Z[x] of degree
φ(n).

Corollary

[Q(ζn) : Q] = φ(n)
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