Field Theory, Part 1: Basic Theory and Algebraic Extensions Jay Havaldar

1.1 Introduction

Recall that a field is a commutative ring in which every nonzero element has a multiplicative inverse.

Definition: The characteristic of a field is the additive order of 1 . For example, if $1+1+1=0$, then we say the field has characteristic 3 . If $1+1+\ldots$ is never equal to 0 , we say the field has characteristic 0 . The characteristic of a field is either 0 or a prime.

Denote $1+1+\cdots+1$, added n times, we denote this element $n \cdot 1$. For each field F, we have a natural homomorphism $\mathbb{Z} \rightarrow F$, which maps n to $n \cdot 1$. Note that a homomomorphism into a field is either zero identically or an isomorphism; thus the image of this map can be realized as a subfield of F.

The kernel of this homomorphism is exactly $(\operatorname{char} F) \mathbb{Z}$. By the isomorphism theorems, then, F contains either a subring isomorphic to \mathbb{Z} (in which case F contains \mathbb{Q}) or else F contains a subring isomorphic to $\mathbb{Z} / p \mathbb{Z}$ (in which case \mathbb{F}_{p}, the finite field of p elements, is a subfield).

Definition: The prime subfield of a field F is the subfield generated by 1 additively. It is either \mathbb{Q} or \mathbb{F}_{p}, the finite field of p elements.

Definition: If K is a field containing a subfield F, then K is an extension of F. The prime subfield is called the base field of an extension.

Definition: The degree of K / F, the extension K over F, is the dimension of K as a vector space over F.

Definition: Let K be an extension of F. Then for $\alpha \in K, F(\alpha)$ denotes the smallest subfield of K which contains F and α. This is called a simple extension of F; a simple extension is not, in general, simply an extension of degree 2 over F.

Theorem 1

Let F be a field and $p(x) \in F[x]$ an irreducible polynomial. Then there exists a field K containing F such that $p(x)$ has a root.

We can prove this by considering the field:

$$
K=\frac{F[x]}{(p(x))}
$$

Since p is irreducible, and $F[x]$ is a PID, p spans a maximal ideal, and thus K is indeed a field. Furthermore, we have the canonical projection:

$$
\pi: F[x] \rightarrow K
$$

When restricted to F, this map is an isomorphism. Since it sends 1 to 1 , it is an isomorphism and therefore an image of F lies in K. Thus, since π is a homomorphism, denoting the image in the quotient with a bar, we have:

$$
\overline{p(x)}=p(\bar{x})=0
$$

And thus, \bar{x} is a root of p. In particular, let:

$$
p(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

Then if $\theta=\bar{x}$, then the above proof gives us a basis for K :

$$
1, \theta, \ldots, \theta^{n-1}
$$

And thus, $[K: F]=n$, i.e. K is a vector space over F of dimension n. It remains to check that this is indeed a basis, i.e. that it is linearly independent; this follows from the fact that p is irreducible.

Theorem 2

Let F be a field and $p(x) \in F[x]$ an irreducible polynomial. Suppose that K is an extension of F containing a root α of $p(x)$ such that $p(\alpha)=0$. Let $F(\alpha)$ denote the subfield of K generated over F by α. Then:

$$
F(\alpha) \cong \frac{F[x]}{(p(x))}
$$

This theorem tells us that any field over F in which $p(x)$ contains a root contains a subfield isomorphic to the extension we considered in Theorem 1. The natural homomorphism that allows us to prove this identity is:

$$
\varphi: F[x] \rightarrow F(\alpha) \subseteq K f(x) \mapsto f(\alpha)
$$

This homomorphism is exactly evaluation. With some work, we can prove that this is a nontrivial ring homomorphism; thus the quotient ring is indeed a field.

Indeed, we can totally describe $F(\alpha)$ using this theorem:

Corollary

Suppose that $p(x)$ has degree n. Then:

$$
F(\alpha)=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}\right\} \subseteq K
$$

Where $a_{i} \in F$.
Describing the fields which are generated by more than element is a little more complicated.
Note that Theorem 2 tells us that the roots of an irreducible polynomial are, in a sense, indistinguishable; adjoining any root of an irreducible polynomial yields an isomorphic field. We extend this result.

Theorem 3

Let $\varphi: F \rightarrow \tilde{F}$ be an isomorphism of fields. Let $p(x) \in F[x]$ be an irreducible polynomial and let $p^{\prime}(x)=\varphi(p(x))$ (we simply map each coefficient under φ). Then $p^{\prime}(x)$ is irreducible.

Let α be a root of $p(x)$ and β be a root of $p^{\prime}(x)$ in some extension of F^{\prime}. Then there is an isomorphism:

$$
\begin{gathered}
\sigma: F(\alpha) \rightarrow F^{\prime}(\beta) \\
\sigma: a \mapsto \beta
\end{gathered}
$$

And such that σ restricted to F is exactly φ.
Thus, we can extend any isomorphism of fields to an isomorphism of simple extensions which maps roots to roots. In particular, if $F=F^{\prime}$ and φ is the identity, then this tells us that $F(\alpha) \cong$ $F(\beta)$, where β is another root of $p(x)$. This will be vital to understanding Galois theory.

Theorem 4 (Eisenstein's Criterion)

Suppose that we have a polymial in $\mathbb{Q}[x]$ given by:

$$
a_{n} x^{n}+\cdots+a_{1} x+a_{0}
$$

Then if there exists a prime p such that: $-p \mid a_{i}$ for each $i \neq n-p \nmid a_{n}-p^{2} \nmid a_{0}$ Then, this polynomial is irreducible over \mathbb{Q} and equivalently over \mathbb{Z}.

1.2 Algebraic Extensions

Definition: The element $\alpha \in K$ is said to be algebraic over F if α is a root of some nonzero polynomial with coefficients in F. Otherwise, α is said to be transcendental over F. The extension K / F is algebraic if every element of K is algebraic over F.

From the Euclidean algorithm, we get:
Definition: Let α be algebraic over F. Then there exists a unique monic irreducible polynomial $m_{\alpha, F}(x) \in F[x]$ which has α as a root. This polynomial is called the minimal polynomial of α and we say the degree of α is the degree of this polynomial.

Proposition 1

Let α be algebraic over F, and let $F(\alpha)$ be the field generated by α over F. Then:

$$
F(\alpha) \cong \frac{F[x]}{\left(m_{\alpha}(x)\right)}
$$

This proves that in particular:

$$
[F(\alpha): F]=\operatorname{deg} \alpha
$$

Thus, the degree of a simple extension is exactly the degree of the minimal polynomial, and we have an explicit way of computing simple extensons corresponding to algebraic elements.

Proposition 2

The element α is algebraic over F iff the simple extension $F(\alpha) / F$ is finite.
This tells us that the property that α is algebraic over F is equivalent to the property that $[F(\alpha)$: $F]$ is finite. In particular, we have the corollary:

Proposition 3

If an extension K / F is finite, then it is algebraic.
A simple algebraic extension is finite, but in general the converse is not true, since there are infinite algebraic extensions.

Example Let F be a field of characteristic 2 , and K an extension of degree 2 (called a quadratic extension). Let $\alpha \in K$ be an element not in F. It must be algebraic. Its minimal polynomial cannot be degree 1 (since $\alpha \notin F$); and so it is quadratic. It looks like:

$$
m_{\alpha}(x)=x^{2}+b x+c
$$

For some $b, c \in F$. Furthermore, $K=F(\alpha)$. The roots are given by:

$$
\alpha=\frac{-b \pm \sqrt{b^{2}-4 c}}{2}
$$

And $b^{2}-4 c$ is not a square in F, since if it were then $\alpha \in F$.
Now, $F(\alpha) \subset F\left(\sqrt{b^{2}-4 c}\right)$ since α is an element of the field on the right. Conversely, $\sqrt{b^{2}-4 c}=$ $\pm(b+2 \alpha)$ so we have the reverse inclusion.

We have just shown that any quadratic extension is of the form $F(\sqrt{D})$ where D is an element of F which is not a square in F; conversely, every such extension has degree 2 .

Theorem 5

Let $F \subseteq K \subseteq L$ be fields. Then:

$$
[L: F]=[L: K][K: F]
$$

This is an analogous theorem to the one for groups; indeed this connection is deeper than it appears.

Corollary

Suppose L / F finite extension, and K a subfield of L containing F. Then $[K: F]$ divides $[L: F]$.

Definition: An extension K / F is finitely generated if there are element $\alpha_{1}, \ldots, \alpha_{k}$ in K such that:

$$
K=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)
$$

As expected, we can obtain this field by recursively compounding a series of simple extensions, i.e.:

$$
(F(\alpha))(\beta)=F(\alpha, \beta)
$$

Where $F(\alpha, \beta)$ is the smallest field containing F, α, and β.

Theorem 6

The extension K / F is finite iff K is generated by a finite number of algebraic elements over F. If these elements have degrees n_{1}, \ldots, n_{k} then, K is algebraic of degree at most $n_{1} n_{2} \ldots n_{k}$.

To see this, notice that if K / F is finite of degree n, then say $\alpha_{1}, \ldots, \alpha_{n}$ is a basis for K as a vector space over F. Then:

$$
\left[F\left(\alpha_{i}\right): F\right] \mid[K: F]=n
$$

Therefore, by Proposition 2 each α_{i} is algebraic. Conversely, if K is generated by a finite number of algebraic elements, then it is generated as a vector space by polynomials of those elements.

Corollary

Let L / F be an arbitrary extension. Then the collection of elements of L that are algebraic over F forms a subfield K of L.

Suppose that α, β are algebraic over F. Then, note that $\alpha \pm \beta, \alpha \beta, \alpha / \beta, \alpha^{-1}$ are all algebraic, and lie in the finite extension $F(\alpha, \beta)$; and since this extension is finite, these elements are algebraic. Thus, the collection of algebraic elements is closed under addition, multiplication, and inverses.

Theorem 7

If K is algebraic over F and L is algebraic over K, then L is algebraic over F.
We also ask about "intersections' of fields.
Definition: Let K_{1}, K_{2} be subfields of K. The composite field of K_{1}, K_{2}, denoted $K_{1} K_{2}$, is the smallest subfield of K containing both K_{1}, K_{2}. It is equivalently the intersection of all subfields of K containing both K_{1} and K_{2}.

Indeed, if K_{1}, K_{2} are finite extensions, then if we combine their bases, we can construct a set of generators for $K_{1} K_{2}$. From this discussion, we can see:

Proposition 4

Let K_{1}, K_{2} be two finite extensions of a field F contained in K. Then:

$$
\left[K_{1} K_{2}: F\right] \leq\left[K_{1}: F\right][K 2: F]
$$

Corollary

Suppose that $\left[K_{1}: F\right]=n$, and $\left[K_{2}: F\right]=m$, then if n, m are relatively prime then:

$$
\left[K_{1} K_{2}: F\right]=\left[K_{1}: F\right]\left[K_{2}: F\right]=n m
$$

