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1.1 Introduction

Recall that a field is a commutative ring in which every nonzero element has a multiplicative
inverse.

Definition: The characteristic of a field is the additive order of 1. For example, if 1+ 141 =0,
then we say the field has characteristic 3. If 1 + 1 + ... is never equal to 0, we say the field has
characteristic 0. The characteristic of a field is either 0 or a prime.

Denote 1+ 1+ ---+ 1, added n times, we denote this element n - 1. For each field F, we have
a natural homomorphism Z — F, which maps n to n - 1. Note that a homomomorphism into a
field is either zero identically or an isomorphism; thus the image of this map can be realized as a
subfield of F'.

The kernel of this homomorphism is exactly (charF)Z. By the isomorphism theorems, then, F
contains either a subring isomorphic to Z (in which case F contains Q) or else F' contains a subring
isomorphic to Z/pZ (in which case F,, the finite field of p elements, is a subfield).

Definition: The prime subfield of a field F is the subfield generated by 1 additively. It is either
Q or F,, the finite field of p elements.

Definition: If K is a field containing a subfield F', then K is an extension of F. The prime subfield
is called the base field of an extension.

Definition: The degree of K /F, the extension K over F, is the dimension of K as a vector space
over F.

Definition: Let K be an extension of F. Then for a € K, F(«) denotes the smallest subfield of
K which contains F' and «. This is called a simple extension of F; a simple extension is not, in
general, simply an extension of degree 2 over F.

Theorem 1

Let F' be a field and p(z) € F[z] an irreducible polynomial. Then there exists a field
K containing F such that p(z) has a root.

We can prove this by considering the field:

Since p is irreducible, and F[z] is a PID, p spans a maximal ideal, and thus K is indeed a field.
Furthermore, we have the canonical projection:

w: Flz] - K

When restricted to F, this map is an isomorphism. Since it sends 1 to 1, it is an isomorphism and
therefore an image of F' lies in K. Thus, since 7 is a homomorphism, denoting the image in the
quotient with a bar, we have:

p(z) =p(@) =0



And thus, 7 is a root of p. In particular, let:

p(z) = anz" + -+ a1z + ag

Then if § = z, then the above proof gives us a basis for K:

1,0,...,0" 1

And thus, [K : F| = n, i.e. K is a vector space over F of dimension n. It remains to check
that this is indeed a basis, i.e. that it is linearly independent; this follows from the fact that p is
irreducible.

Theorem 2

Let F be a field and p(z) € Flz] an irreducible polynomial. Suppose that K is an
extension of F' containing a root « of p(z) such that p(a) = 0. Let F(«) denote the
subfield of K generated over F' by a. Then:

This theorem tells us that any field over F' in which p(x) contains a root contains
a subfield isomorphic to the extension we considered in Theorem 1. The natural
homomorphism that allows us to prove this identity is:

¢ : Fla] = F(a) € Kf(z) = f(a)

This homomorphism is exactly evaluation. With some work, we can prove that this is
a nontrivial ring homomorphism; thus the quotient ring is indeed a field.

Indeed, we can totally describe F(«) using this theorem:

Corollary

Suppose that p(x) has degree n. Then:

F(a)={ag +aa+ - +a, 16" '} CK

Where a; € F.
Describing the fields which are generated by more than element is a little more complicated.

Note that Theorem 2 tells us that the roots of an irreducible polynomial are, in a sense, indistin-
guishable; adjoining any root of an irreducible polynomial yields an isomorphic field. We extend
this result.



Theorem 3
Let ¢ : F — F be an isomorphism of fields. Let p(z) € F[z] be an irreducible polyno-
mial and let p’(x) = p(p(x)) (we simply map each coefficient under ). Then p/(z) is

irreducible.

Let a be a root of p(x) and 3 be a root of p’(x) in some extension of F’. Then there
is an isomorphism:

o: Fla) = F'(B)

c:a—p

And such that o restricted to F'is exactly .

Thus, we can extend any isomorphism of fields to an isomorphism of simple extensions which
maps roots to roots. In particular, if F = F’ and ¢ is the identity, then this tells us that F/(a) =
F(B), where 3 is another root of p(z). This will be vital to understanding Galois theory.

Theorem 4 (Eisenstein’s Criterion)

Suppose that we have a polymial in Q[z] given by:

anx” + -+ a1 + ag

Then if there exists a prime p such that: - p | a; foreach i # n - p{ a, - p? 1 ap Then,
this polynomial is irreducible over Q and equivalently over Z.

1.2 Algebraic Extensions

Definition: The element « € K is said to be algebraic over F if « is a root of some nonzero poly-
nomial with coefficients in F.. Otherwise, « is said to be transcendental over F. The extension
K /F is algebraic if every element of K is algebraic over F'.

From the Euclidean algorithm, we get:

Definition: Let o be algebraic over F. Then there exists a unique monic irreducible polynomial
ma,r(x) € Flz] which has « as a root. This polynomial is called the minimal polynomial of « and
we say the degree of a is the degree of this polynomial.

Proposition 1

Let a be algebraic over F, and let F(a) be the field generated by « over F. Then:

Fla)= ——_

This proves that in particular:



[F(a): F]=deg a

Thus, the degree of a simple extension is exactly the degree of the minimal polynomial, and we
have an explicit way of computing simple extensons corresponding to algebraic elements.

Proposition 2
The element « is algebraic over F iff the simple extension F'(«)/F is finite.

This tells us that the property that « is algebraic over F' is equivalent to the property that [F(«) :
F]is finite. In particular, we have the corollary:

Proposition 3
If an extension K /F is finite, then it is algebraic.

A simple algebraic extension is finite, but in general the converse is not true, since there are
infinite algebraic extensions.

Example Let F be a field of characteristic 2, and K an extension of degree 2 (called a quadratic
extension). Let @ € K be an element not in F. It must be algebraic. Its minimal polynomial
cannot be degree 1 (since a ¢ F); and so it is quadratic. It looks like:

me(z) = 2% + b + ¢

For some b,c € F. Furthermore, K = F(«). The roots are given by:

L chEVE
- ==

And b? — 4c is not a square in F, since if it were then a € F.

Now, F(a) C F(Vb? — 4c) since « is an element of the field on the right. Conversely, vb? — 4¢c =
+(b + 2a) so we have the reverse inclusion.

We have just shown that any quadratic extension is of the form F'(v/ D) where D is an element
of F which is not a square in F’; conversely, every such extension has degree 2.

Theorem 5

Let F C K C L be fields. Then:

[L:F)=[L:K][K:F]

This is an analogous theorem to the one for groups; indeed this connection is deeper than it
appears.



Corollary

Suppose L/F finite extension, and K a subfield of L containing F. Then [K : F]
divides [L : F].

Definition: An extension K/F is finitely generated if there are element a3, ..., in K such
that:

K =Fl(o,...,o)

As expected, we can obtain this field by recursively compounding a series of simple extensions,
i.e.

Where F'(«, 8) is the smallest field containing F, a, and 3.

Theorem 6

The extension K/ F is finite iff K is generated by a finite number of algebraic elements
over F. If these elements have degrees ny,...,n; then, K is algebraic of degree at
most nins ...ng.

To see this, notice that if K/ F is finite of degree n, then say a4, ..., a,, is a basis for K as a vector
space over F. Then:

[F(ai): FI[[K: F]=n

Therefore, by Proposition 2 each «; is algebraic. Conversely, if K is generated by a finite number
of algebraic elements, then it is generated as a vector space by polynomials of those elements.

Corollary

Let L/F be an arbitrary extension. Then the collection of elements of L that are
algebraic over F forms a subfield K of L.

Suppose that «, 3 are algebraic over F.. Then, note that a+ 3, a3, a/3,a~ ! are all algebraic, and
lie in the finite extension F'(«, 3); and since this extension is finite, these elements are algebraic.
Thus, the collection of algebraic elements is closed under addition, multiplication, and inverses.

Theorem 7
If K is algebraic over F' and L is algebraic over K, then L is algebraic over F.
We also ask about “intersections'' of fields.

Definition: Let K, K5 be subfields of K. The composite field of K1, K5, denoted K; K>, is the
smallest subfield of K containing both K1, K». It is equivalently the intersection of all subfields
of K containing both K7 and Ks.

Indeed, if K1, K> are finite extensions, then if we combine their bases, we can construct a set of
generators for K K. From this discussion, we can see:



Proposition 4

Let K, K5 be two finite extensions of a field I’ contained in K. Then:

[K1Ky: F) < [K;: F][K2: F]

Corollary

Suppose that [K; : F| =n, and [K; : F] = m, then if n, m are relatively prime then:

[K1Ky: F]=[K;: F][Ks: F] =nm
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