
Field Theory, Part 1: Basic Theory and Algebraic Extensions
Jay Havaldar



1.1 Introduction

Recall that a field is a commutative ring in which every nonzero element has a multiplicative
inverse.

Definition: The characteristic of a field is the additive order of 1. For example, if 1 + 1 + 1 = 0,
then we say the field has characteristic 3. If 1 + 1 + . . . is never equal to 0, we say the field has
characteristic 0. The characteristic of a field is either 0 or a prime.

Denote 1 + 1 + · · · + 1, added n times, we denote this element n · 1. For each field F , we have
a natural homomorphism Z → F , which maps n to n · 1. Note that a homomomorphism into a
field is either zero identically or an isomorphism; thus the image of this map can be realized as a
subfield of F .

The kernel of this homomorphism is exactly (charF )Z. By the isomorphism theorems, then, F
contains either a subring isomorphic to Z (in which case F containsQ) or else F contains a subring
isomorphic to Z/pZ (in which case Fp, the finite field of p elements, is a subfield).

Definition: The prime subfield of a field F is the subfield generated by 1 additively. It is either
Q or Fp, the finite field of p elements.

Definition: IfK is a field containing a subfield F , thenK is an extension of F . The prime subfield
is called the base field of an extension.

Definition: The degree ofK/F , the extensionK over F , is the dimension ofK as a vector space
over F .

Definition: Let K be an extension of F . Then for α ∈ K, F (α) denotes the smallest subfield of
K which contains F and α. This is called a simple extension of F ; a simple extension is not, in
general, simply an extension of degree 2 over F .

Theorem 1

Let F be a field and p(x) ∈ F [x] an irreducible polynomial. Then there exists a field
K containing F such that p(x) has a root.

We can prove this by considering the field:

K =
F [x]

(p(x))

Since p is irreducible, and F [x] is a PID, p spans a maximal ideal, and thus K is indeed a field.
Furthermore, we have the canonical projection:

π : F [x] → K

When restricted to F , this map is an isomorphism. Since it sends 1 to 1, it is an isomorphism and
therefore an image of F lies in K. Thus, since π is a homomorphism, denoting the image in the
quotient with a bar, we have:

p(x) = p(x) = 0
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And thus, x̄ is a root of p. In particular, let:

p(x) = anx
n + · · ·+ a1x+ a0

Then if θ = x̄, then the above proof gives us a basis for K:

1, θ, . . . , θn−1

And thus, [K : F ] = n, i.e. K is a vector space over F of dimension n. It remains to check
that this is indeed a basis, i.e. that it is linearly independent; this follows from the fact that p is
irreducible.

Theorem 2

Let F be a field and p(x) ∈ F [x] an irreducible polynomial. Suppose that K is an
extension of F containing a root α of p(x) such that p(α) = 0. Let F (α) denote the
subfield of K generated over F by α. Then:

F (α) ∼=
F [x]

(p(x))

This theorem tells us that any field over F in which p(x) contains a root contains
a subfield isomorphic to the extension we considered in Theorem 1. The natural
homomorphism that allows us to prove this identity is:

φ : F [x] → F (α) ⊆ Kf(x) 7→ f(α)

This homomorphism is exactly evaluation. With some work, we can prove that this is
a nontrivial ring homomorphism; thus the quotient ring is indeed a field.

Indeed, we can totally describe F (α) using this theorem:

Corollary

Suppose that p(x) has degree n. Then:

F (α) = {a0 + a1α+ · · ·+ an−1α
n−1} ⊆ K

Where ai ∈ F .

Describing the fields which are generated by more than element is a little more complicated.

Note that Theorem 2 tells us that the roots of an irreducible polynomial are, in a sense, indistin-
guishable; adjoining any root of an irreducible polynomial yields an isomorphic field. We extend
this result.
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Theorem 3

Let φ : F → F̃ be an isomorphism of fields. Let p(x) ∈ F [x] be an irreducible polyno-
mial and let p′(x) = φ(p(x)) (we simply map each coefficient under φ). Then p′(x) is
irreducible.

Let α be a root of p(x) and β be a root of p′(x) in some extension of F ′. Then there
is an isomorphism:

σ : F (α) → F ′(β)

σ : a 7→ β

And such that σ restricted to F is exactly φ.

Thus, we can extend any isomorphism of fields to an isomorphism of simple extensions which
maps roots to roots. In particular, if F = F ′ and φ is the identity, then this tells us that F (α) ∼=
F (β), where β is another root of p(x). This will be vital to understanding Galois theory.

Theorem 4 (Eisenstein’s Criterion)

Suppose that we have a polymial in Q[x] given by:

anx
n + · · ·+ a1x+ a0

Then if there exists a prime p such that: - p | ai for each i ̸= n - p ∤ an - p2 ∤ a0 Then,
this polynomial is irreducible over Q and equivalently over Z.

1.2 Algebraic Extensions

Definition: The element α ∈ K is said to be algebraic over F if α is a root of some nonzero poly-
nomial with coefficients in F . Otherwise, α is said to be transcendental over F . The extension
K/F is algebraic if every element of K is algebraic over F .

From the Euclidean algorithm, we get:

Definition: Let α be algebraic over F . Then there exists a unique monic irreducible polynomial
mα,F (x) ∈ F [x] which has α as a root. This polynomial is called theminimal polynomial of α and
we say the degree of α is the degree of this polynomial.

Proposition 1

Let α be algebraic over F , and let F (α) be the field generated by α over F . Then:

F (α) ∼=
F [x]

(mα(x))

This proves that in particular:
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[F (α) : F ] = deg α

Thus, the degree of a simple extension is exactly the degree of the minimal polynomial, and we
have an explicit way of computing simple extensons corresponding to algebraic elements.

Proposition 2

The element α is algebraic over F iff the simple extension F (α)/F is finite.

This tells us that the property that α is algebraic over F is equivalent to the property that [F (α) :
F ] is finite. In particular, we have the corollary:

Proposition 3

If an extension K/F is finite, then it is algebraic.

A simple algebraic extension is finite, but in general the converse is not true, since there are
infinite algebraic extensions.

Example Let F be a field of characteristic 2, andK an extension of degree 2 (called a quadratic
extension). Let α ∈ K be an element not in F . It must be algebraic. Its minimal polynomial
cannot be degree 1 (since α /∈ F ); and so it is quadratic. It looks like:

mα(x) = x2 + bx+ c

For some b, c ∈ F . Furthermore, K = F (α). The roots are given by:

α =
−b±

√
b2 − 4c

2

And b2 − 4c is not a square in F , since if it were then α ∈ F .

Now, F (α) ⊂ F (
√
b2 − 4c) since α is an element of the field on the right. Conversely,

√
b2 − 4c =

±(b+ 2α) so we have the reverse inclusion.

We have just shown that any quadratic extension is of the form F (
√
D) where D is an element

of F which is not a square in F ; conversely, every such extension has degree 2.

Theorem 5

Let F ⊆ K ⊆ L be fields. Then:

[L : F ] = [L : K][K : F ]

This is an analogous theorem to the one for groups; indeed this connection is deeper than it
appears.
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Corollary

Suppose L/F finite extension, and K a subfield of L containing F . Then [K : F ]
divides [L : F ].

Definition: An extension K/F is finitely generated if there are element α1, . . . , αk in K such
that:

K = F (α1, . . . , αk)

As expected, we can obtain this field by recursively compounding a series of simple extensions,
i.e.:

(F (α))(β) = F (α, β)

Where F (α, β) is the smallest field containing F, α, and β.

Theorem 6

The extensionK/F is finite iffK is generated by a finite number of algebraic elements
over F . If these elements have degrees n1, . . . , nk then, K is algebraic of degree at
most n1n2 . . . nk.

To see this, notice that ifK/F is finite of degree n, then say α1, . . . , αn is a basis forK as a vector
space over F . Then:

[F (αi) : F ] | [K : F ] = n

Therefore, by Proposition 2 each αi is algebraic. Conversely, ifK is generated by a finite number
of algebraic elements, then it is generated as a vector space by polynomials of those elements.

Corollary

Let L/F be an arbitrary extension. Then the collection of elements of L that are
algebraic over F forms a subfield K of L.

Suppose that α, β are algebraic over F . Then, note that α±β, αβ, α/β, α−1 are all algebraic, and
lie in the finite extension F (α, β); and since this extension is finite, these elements are algebraic.
Thus, the collection of algebraic elements is closed under addition, multiplication, and inverses.

Theorem 7

If K is algebraic over F and L is algebraic over K, then L is algebraic over F .

We also ask about ``intersections'' of fields.

Definition: Let K1,K2 be subfields of K. The composite field of K1,K2, denoted K1K2, is the
smallest subfield of K containing both K1,K2. It is equivalently the intersection of all subfields
of K containing both K1 and K2.

Indeed, if K1,K2 are finite extensions, then if we combine their bases, we can construct a set of
generators for K1K2. From this discussion, we can see:
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Proposition 4

Let K1,K2 be two finite extensions of a field F contained in K. Then:

[K1K2 : F ] ≤ [K1 : F ][K2 : F ]

Corollary

Suppose that [K1 : F ] = n, and [K2 : F ] = m, then if n,m are relatively prime then:

[K1K2 : F ] = [K1 : F ][K2 : F ] = nm
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