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4.1 Derivatives in Several Variables

Recall that the definition of the derivative in a single variable is:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

However, this definition does not generalize to higher dimensions. In particular, the quantity on
the right hand side would be a quotient of vectors. Instead we note that we can rewrite the
above as:

0 = lim
h→0

|f(x+ h)− f(x)− f ′(x)h|
|h|

We generalize the definition as follows.

Definition: Let E be a subset of Rn and let f : E → Rm be a function. Then we say that f is
differentiable at x0 ∈ E if there exists a linear transformation L : Rn → Rn so that:

0 = lim
h→0

|f(x+ h)− f(x)− Lh|
|h|

Because limits are unique, (with some work), we can show that this definition makes sense, i.e.
L is unique at each point if it exists.

4.1.1 Partial and Directional Derivatives

Definition: Let E ⊂ Rn and let f be a function f : E → R⋗, with x0 ∈ int(E). Let v be a vector
in Rn. Then if the following limit exists, it is called the directional derivative of f in the direction
of v, or Dvf(x0):

lim
t→0

f(x0 + tv)− f(x0)

t

Note that this object is a vector in the codomain R⋗, not a linear transformation as the derivative
is.

One special type of directional derivative is a partial derivative.

Definition: The partial derivative ∂f
∂xj

or sometimes denoted fxj is the directional derivative of
f in the direction of the jth basis vector in the standard basis for Rn.

Proposition

Let E ⊂ Rn and let f be a function f : E → R⋗, with x0 ∈ int(E). Let v be a vector in
Rn. Then if f is differentiable at x0, then f has a directional derivative Dvf(x0), and
in particular:

Dvf(x0) = f ′(x0)v
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Thus, in particular, if f is differentiable then we can recover its rows. Note that from above we
have:

fxj (x0) = f ′(x0)(ej)

The quantity on the right is exactly the jth column of f ′(x0). Thus, if a function is differentiable,
then its partial derivatives all exist and they completely describe the derivative. However, the
converse is not true; there are many examples of functions which have partial derivatives but
which are not differentiable. The stronger condition that guarantees the converse is as follows.

At times, f ′(x0) is used to denote the linear transformation of the derivative, while Df(x0) rep-
resents the matrix of the derivative with respect to some basis; in practice, it is harmless to use
the two interchangeably.

Theorem

Let E ⊂ Rn and let f be a function f : E → R⋗, with x0 ∈ int(E). Then if the partial
derivatives of f exist and are continuous in a neighborhood of x0 contained inE, then
f is differentiable at x0, and the jth column of the derivative is exactly the jth partial
derivative of f .

Alternatively, we could describe the rows of the derivative instead of the columns. Let f =
(f1, . . . , fm). then we can write:

f ′(x0) =

∇f1(x0)
...

∇fm(x0)



4.1.2 The Chain Rule

There is also a suitable analogue for the chain rule.

Theorem (Chain Rule)

Let E ⊂ Rn and let f be a function f : E → F ⊂ R⋗, with x0 ∈ int(E). Let g : F → Rp.
Supose that f is differentiable at x0 and g is differentiable at f(x0). Then g◦f : E → Rp

is also differentiable at x0, and:

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0)

4.1.3 Clairaut’s Theorem

We similarly define what it means for a function to be twice differentiable.

Definition: let E ⊂ Rn be an open set, and f : E → Rm. Then f is continuously differentiable
(also written C1) if the partial derivatives all exist and are continuous. f is twice continuously
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differentiable if it is continuously differentiable, and the partial derivatives (also being functions
from Rn to Rm) are also continuously differentiable. We have C1 ⊂ C2.

We can indeed generalize this definition as follows. A function f isCk if its partial derivatives exist
up to order k and are continuous. The following useful fact is immensely important to calculus:

Theorem (Clairaut’s Theorem)

Let E ⊂ Rn open, and let f : E → Rm be a twice continuously differentiable function
on E. Then for each 1 ≤ i, j ≤ n

(fxi(x0))xj = (fxj (x0))xi

In other words, we can swap the order of differentiation.

4.2 The Inverse & Implicit Function Theorems

Recall that if a function f : R → R is invertible, differentiable, and f ′(x0) is nonzero, then f−1 is
differentiable at f(x0), and:

(f−1)′(f(x0)) =
1

f ′(x0)

In particular, note that we really only need that f is continuously differentiable. If f ′(x0) is nonzero,
then f ′ is either strictly positive or strictly negative. In a small enough neighborhood, by the
continuity of f ′, f is strictly positive or strictly negative; in either case, it is invertible if we pick a
small enough neighborhood around x0 and f(x0), respectively.

The analogue for this theorem is as follows:

Theorem (Inverse Function Theorem)

Let E be an open subset of Rn, and f : E → Rn be a function which is continuously
differentiable on E (i.e. its partial derivatives exist and are continuous). Suppose
x0 ∈ E and f ′(x0) : Rn → Rn is invertible.

Then, there exists a neighborhood of x0 in E, and a neighborhood V ∈ Rn of f(x0)
such that f is a bijection from U to V (i.e. there exists an inverse f−1 : V → U ).

Finally, f−1 is differentiable at f(x0), and (f−1)′(f(x0)) = (f ′(x0))
−1.

There is also an analogue for implicit differentiation which follows from the inverse function the-
orem.

Theorem (Implicit Function Theorem)
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Let E ⊂ Rn be an open set, and f : E → R be continuously differentiable. Let
y = (y1, . . . , yn) be a point in E such that f(y) = 0 and fxn(y) ̸= 0.

Then, there exists an open subset U ofRn−1 containing (y1, . . . , yn−1), an open subset
V of E containing y, and a function g : U → R, such that:

g(y1, . . . , yn−1) = yn

Furthermore, the zero set of f(x) is a graph of a function over U . Finally, g is differ-
entiable with derivative:

gxj (y1, . . . , yn−1) = −
fxj (y)

fxn(y)
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