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4.1 Derivatives in Several Variables

Recall that the definition of the derivative in a single variable is:

f(z) = lim

h—0

flz+h) - f(x)
h

However, this definition does not generalize to higher dimensions. In particular, the quantity on
the right hand side would be a quotient of vectors. Instead we note that we can rewrite the
above as:
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We generalize the definition as follows.

Definition: Let E be a subset of R” and let f : E — R™ be a function. Then we say that f is
differentiable at z( € F if there exists a linear transformation L : R® — R" so that:
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Because limits are unique, (with some work), we can show that this definition makes sense, i.e.
L is unique at each point if it exists.

4.1.1 Partial and Directional Derivatives

Definition: Let £ C R" and let f be a function f : E — R>, with =g € int(F). Let v be a vector
in R™. Then if the following limit exists, it is called the directional derivative of f in the direction
of v, or D, f(z9):

iy (20 +tv) = f(w0)
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Note that this object is a vector in the codomain R>, not a linear transformation as the derivative
is.

One special type of directional derivative is a partial derivative.

Definition: The partial derivative % or sometimes denoted f,; is the directional derivative of
hat)

f in the direction of the jth basis vector in the standard basis for R™.

Proposition

Let E C R™ and let f be a function f : E — R>, with ¢ € int(F). Let v be a vector in
R™. Then if f is differentiable at x¢, then f has a directional derivative D, f(x¢), and
in particular:

va(zO) = f/(IO)U



Thus, in particular, if f is differentiable then we can recover its rows. Note that from above we
have:

fr; (o) = ['(wo)(e;)

The quantity on the right is exactly the jth column of f/(z). Thus, if a function is differentiable,
then its partial derivatives all exist and they completely describe the derivative. However, the
converse is not true; there are many examples of functions which have partial derivatives but
which are not differentiable. The stronger condition that guarantees the converse is as follows.

At times, f'(zo) is used to denote the linear transformation of the derivative, while D f(z() rep-
resents the matrix of the derivative with respect to some basis; in practice, it is harmless to use
the two interchangeably.

Theorem

Let £ C R™ and let f be a function f : E — R>, with zy € int(F). Then if the partial
derivatives of f exist and are continuous in a neighborhood of zy contained in E, then
f is differentiable at zy, and the jth column of the derivative is exactly the jth partial
derivative of f.

Alternatively, we could describe the rows of the derivative instead of the columns. Let f =
(f1,---, fm). then we can write:

V fi(xo)
f(xo) = :
vfm(x(J)

4.1.2 The Chain Rule
There is also a suitable analogue for the chain rule.

Theorem (Chain Rule)

Let E C R™ and let f be a function f : E — F C R>, with 2y € int(E). Letg: F — RP.
Supose that f is differentiable at z( and g is differentiable at f(z¢). Thengof : E — RP
is also differentiable at x, and:

(g0 f)(xo) = g'(f(w0)) - f' (o)

4.1.3 Clairaut’s Theorem

We similarly define what it means for a function to be twice differentiable.

Definition: let £ C R™ be an open set, and f : E — R™. Then f is continuously differentiable
(also written C1) if the partial derivatives all exist and are continuous. f is twice continuously



differentiable if it is continuously differentiable, and the partial derivatives (also being functions
from R™ to R™) are also continuously differentiable. We have C!' c C2.

We can indeed generalize this definition as follows. A function f is C* if its partial derivatives exist
up to order k and are continuous. The following useful fact is immensely important to calculus:

Theorem (Clairaut’s Theorem)

Let E C R™ open, and let f : E — R™ be a twice continuously differentiable function
on E. Thenforeach1<i,57<n

(frz (xo))xj = (f% (1’0))%

In other words, we can swap the order of differentiation.

4.2 The Inverse & Implicit Function Theorems

Recall that if a function f : R — R is invertible, differentiable, and f'(z) is nonzero, then f~!is
differentiable at f(x(), and:

1

(-f— )/(f(xo)) = f/(xO)

In particular, note that we really only need that f is continuously differentiable. If f'(z¢) is nonzero,
then f’ is either strictly positive or strictly negative. In a small enough neighborhood, by the
continuity of f/, f is strictly positive or strictly negative; in either case, it is invertible if we pick a
small enough neighborhood around zy and f(xg), respectively.

The analogue for this theorem is as follows:

Theorem (Inverse Function Theorem)

Let E be an open subset of R, and f : E — R"™ be a function which is continuously
differentiable on FE (i.e. its partial derivatives exist and are continuous). Suppose
xo € E and f'(x) : R* — R™ is invertible.

Then, there exists a neighborhood of z( in E, and a neighborhood V' € R™ of f(x)
such that f is a bijection from U to V (i.e. there exists an inverse f~!: V — U).

Finally, /=1 is differentiable at f(zo), and (f~1)(f(z0)) = (f'(x0))~".

There is also an analogue for implicit differentiation which follows from the inverse function the-
orem.

Theorem (Implicit Function Theorem)



Let £ C R™ be an open set, and f : E — R be continuously differentiable. Let
y=(y1,-...,yn) be a pointin E such that f(y) = 0 and f,, (y) # 0.

Then, there exists an open subset U of R"~! containing (y1,...,¥n_1), an open subset
V of E containing y, and a function g : U — R, such that:

91, Yn-1) = Yn

Furthermore, the zero set of f(x) is a graph of a function over U. Finally, g is differ-
entiable with derivative:

9o, (Y1, -y Y 71):_ff'3_7’(y)
" 7 o frn(y)
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