Representation Theory, Part I: Basics *Jay Havaldar*

Definition: A **representation** of a finite group *G* on a finite dimensional vector space *V* (WLOG the vector space is assumed to be over the complex numbers).

This map gives *V* the structure of a module over *G*, because for $g \in G$, we have:

$$
g(v + w) = gv + gwg(hv) = (gh)v
$$

Sometimes, *V* is itself called the representation of the group; thus, we identify a representation of a group as a vector space on which *G* acts linearly.

Definition: A map φ between two representations *V, W* of *G* (also called a *G*-linear map) is a vector space map $\varphi : V \to W$ such that for any $g \in G$ and $v \in V$:

$$
g\varphi(v) = \varphi(gv)
$$

Definition: A **subrepresentation** of a representation *V* is a vector subpace of *W* of *V* which is invariant under *G*.

Definition: A representation *V* is called **irreducible** if there is no proper nonzero invariant subspace *W* of *V* .

Given two represetnations, the direct sum $V \oplus W$ and the tensor product $V \otimes W$ are also representations. The latter is given by:

$$
g(v \otimes w) = gv \otimes gw
$$

Similarly, the *n*th tensor power can be constructed from a representation, and similarly the exterior powers and symmetric powers as subrepresentations.

1.1 Duals and Tensor Products of Representations; Representation of *Hom*(*V, W*)

The dual *V [∗]* of a vector space is a representation as well. We wish to respect the natural pairing between *V [∗]* and *V* , given by:

$$
\langle v^*, v \rangle = v^*(v)
$$

So we need to define the dual representation such that:

$$
\langle \rho^*(g)v^*, \rho(g)v \rangle = \langle v^*, v \rangle
$$

And this forces us to define the representation as follows. Note that by the definition of the transpose:

$$
\rho(g^{-1})^T v^*(gv) = v^*(g^{-1}gv) = v^*(v)
$$

So we define:

$$
\rho^*(g) = \rho(g^{-1})^T : V^* \to V^*
$$

Now that we have defined the dual and the tensor product of representations, we can show that *Hom*(*V, W*) is a representation. Note that there is a natural identification:

$$
V^* \otimes W \to Hom(V, W)a^* \otimes b \to (v \mapsto a^*(v)b)
$$

It is not hard to show that this identification is surjective and injective, and hence an isomorphism of vector spaces. Now, we take an arbitrary element *a [∗] ⊗ b ∈ V [∗] ⊗ W*. We identify this element naturally with $\varphi \in Hom(V, W)$:

$$
\varphi: v \mapsto a^*(v)b
$$

Now we consider $g\varphi = g(a^*\otimes b).$ We have:

$$
g(a^* \otimes b) = ga^* \otimes gb = (g^{-1})^T a^* \otimes gb
$$

Where we have used the definition of the dual representation. By the natural identification again we have:

$$
g\varphi: v \mapsto (g^{-1})^T a^*(v)gb = ga^*(g^{-1}v)b
$$

But this is simply telling us that:

$$
(g\varphi)(v) = g\varphi(g^{-1}v)
$$

And this gives us the representation of the space *Hom*(*V, W*).

Proposition 1

The vector space of *G*-linear maps between two representations *V, W* of *G* is the subspace of $Hom(V, W)$ which is fixed by *G*, often denoted $Hom_G(V, W)$

Note that if we have a *G*-linear map *φ*, then by definition:

$$
g\varphi(v) = \varphi(gv)
$$

Note that the representation of *Hom*(*V, W*) however is given by:

$$
(g\varphi)(v) = g\varphi(g^{-1}v) = \varphi(gg^{-1}v) = \varphi(v)
$$

So indeed φ is fixed under the action of *G*. The converse holds evidently as well; if φ is fixed by *G*, then it follows that φ is *G*-linear.

Finally, if *X* is any finite set and *G* acts on *X*, then *G* naturally is embedded into the permutation group *Aut*(*X*) of *X*. So we can construct a vector space with basis $e_x : x \in X$ and the action of *G* is then given by:

$$
g\sum a_{x}e_{x}=\sum a_{x}e_{gx}
$$

Definition: The **regular representation** *R^G* or *R* corresponds to the action of *G* on itself. We could alternatively define it as the space of complex-valued functions on *G* where:

$$
(g\alpha)(h) = \alpha(g^{-1}h)
$$

To prove that these are equivalent, we identify e_x with the function f_x which takes the value 1 on *x* and 0 elsewhere. Then we have:

$$
(gf_x)(h) = f_x(g^{-1}h)
$$

And evidently this function takes value 1 where $g^{-1}h = x$ or equivalently $h = gx$. Thus we can write:

$$
(gf_x) = f_{gx}
$$

1.2 Complete Reducibility; Schur's Lemma

Proposition 2 (Maschke's Theorem)

If *W* is a subrepresentation of a representation *V* of a finite group *G*, then there is a complementary invariant subspace W' of V , so that $V = W \oplus W'$

We define the complement as follows. Chose an arbitary subspace *U* which is complementary to *W*. Then we can write:

$$
V\cong W\oplus U
$$

So for any $v \in V$, we can identify it with some pair (w, u) . Define the natural projection map $\pi_0: V \mapsto W$ as:

$$
\pi_0(w,u)=w
$$

This map is *G*-linear. Then, we define a new map *π*:

$$
\pi(v) = \sum_{g \in G} g \pi_0(g^{-1}v)
$$

Since π_0 is *G*-linear, it follows that this map is *G* linear. In fact on *W*, we have:

$$
\pi(w) = \sum_{g \in G} g \pi_0(g^{-1}w) = \sum_{g \in G} g g^{-1} \pi_0(w) = |G|w
$$

So this map is nothing more than multiplication by *∥G∥* on *W*. Therefore, its kernel is a subspace of *V* which is invariant under *G* and is complementary to *W*.

Corollary

Any representation is a direct sum of irreducible representations.

Now we move on to Schur's Lemma, one of the more useful theorems in basic representation theory.

Proposition 3 (Schur's Lemma)

If *V, W* are irreducible representations of *G* and $\varphi : V \to W$ is a *G*-module homomorphism, then: - Either φ is an isomorphism, of $\varphi = 0$. - If $V = W$, then $\varphi = \lambda I$ for some *λ ∈* C.

The first claim follows from the fact that if *φ* is a module homomorphism, then its kernel and image are subspaces of *V, W* respectively. Furthermore, for $v \in \text{ker } \varphi$:

$$
\varphi(gv)=g\varphi(v)=0
$$

So that the kernel is invariant under *G*. Similarly, for $\varphi(v)$ in the image we have:

$$
g\varphi(v) = \varphi(gv)
$$

And so $g\varphi(v)$ also lies in the image. Thus, we have shown the kernel and image of φ are subrepresentations of *V* and *W* respectively. The only possibilities are that the kernel is trivial and the image is *W* (yielding an isomorphism), or the kernel is *V* and the image is trivial (i.e. $\varphi = 0$).

To prove the second claim, *φ* must have an eigenvalue *λ* so that *φ−λI* has nonzero kernel. But if the kernel is nonzero, then by the above argument, the kernel is the *V* . So identically we indeed have:

$$
\varphi - \lambda I = 0
$$

Proposition 4

For any representation *V* of a finite group *G*, there is a decomposition:

$$
V=V_1^{\oplus a_1}\oplus\cdots\oplus V_k^{\oplus a_k}
$$

Where *Vⁱ* are distinct irreducible representations. The decomposition is furthermore unique.

This is a straightforward consequence of Schur's Lemma. Occasionally this decomposition is written:

$$
V = a_1 V_1 \oplus \cdots \oplus a_k V_k = a_1 V_1 + \cdots + a_k V_k
$$

Where the *aⁱ* denote multiplicities.

1.3 Examples: Abelian Groups; S_3

In general, if *V* is a repreentation of a finite group *G*, then each $q \in G$ gives a map $\rho(q): V \to V$. However, in general, this map is not a *G*-module homomorphism (*G*-linear), i.e. in general we do not have:

$$
g(h(v)) = h(g(v))
$$

Indeed, $ρ(g)$ is *G*-linear for every $ρ$ iff *g* is in $Z(G)$. Then *g* commutes with *h* and the above holds. In particular if *G* is abelian, the above holds. But if *V* is an irreducible representation, by Schur's Lemma each *g ∈ G* acts on *V* by a scalar multiple, so every subspace is invariant. Thus, *V* is one dimensional.

Therefore, the irreducible representations of an abelian group *G* correspond to homomorphisms:

$$
\rho:G\to\mathbb{C}
$$

Next, we look at *S*3. There are two one dimensional representations, given by the trivial representation (*U*) and the alternating representation *U ′* given by:

$$
gv = \mathsf{sgn}(g)v
$$

Naturally, we ask if there are any others. Since *G* is a permutation group, it has a natural permutation representation, where it acts on \mathbb{C}^3 by permuting the basis vectors. The representation is not irreducible since it has the invariant subspace spanned by (1*,* 1*,* 1). The complementary subspace is given by:

$$
V = \{(z_1, z_2, z_3) : z_1 + z_2 + z_3 = 0\}
$$

And this is irreducible since it has no invariant subspaces. It is called the standard representation.

In general, we take a representaiton *W* of *S*³ and look at the action of the abelian subgroup $\mathbb{Z}/3$ on *W*. If τ is a generator of this subgroup (a 3-cycle), then the space *W* is spanned by eigenvectors for the action of $\tau.$ Furthermore, since $\tau^3=1$, the eigenvalues are all third roots of unity. We write $\tau(v) = \omega^i v$ where ω^i is one of the roots of unity.

Let σ be a transposition in S_3 . Then we have the relation:

$$
\sigma\tau\sigma=\tau^2
$$

So therefore we can write:

$$
\tau(\sigma(v)) = \sigma(\tau^2(v))
$$

$$
= \sigma(\omega^{2i}v)
$$

$$
= \omega^{2i}\sigma(v)
$$

So if v is an eigenvector for τ with eigenvalue ω^i , then $\sigma(v)$ is an eigenvector for τ with eigenvalue *ω* 2*i* .

If v is an eigenvector of τ with eigenvalue $\omega^i\neq 1$, then $\sigma(v)$ is an eigenvector with a different eigenvalue and hence independent. Thus, $v, \sigma(v)$ span a two dimensional subspace of W which is invariant under *S*3.

On the other hand, if $w^i = 1$, then $\sigma(v)$ may or may not be linearly independent to *v*. If it is not, then *v* spans a one-dimensional subrepresentation, isomorphic to the trivial representation if $\sigma(v) = v$ and the alternating representation if $\sigma(v) = -v$. If $\sigma(v)$ and *v* are linearly independent, then $v + \sigma(v)$ and $v - \sigma(v)$ span one dimensional represnetations of W isomorphic to the trivial and alternating representations, respectively.

This is not the best approach to find the decomposition of any representation of *S*3, but it is one way to do it.