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Definition: A representation of a finite group G on a finite dimensional vector space V (WLOG
the vector space is assumed to be over the complex numbers).

This map gives V the structure of a module over G, because for g ∈ G, we have:

g(v + w) = gv + gwg(hv) = (gh)v

Sometimes, V is itself called the representation of the group; thus, we identify a representation
of a group as a vector space on which G acts linearly.

Definition: A map φ between two representations V,W of G (also called a G-linear map) is a
vector space map φ : V → W such that for any g ∈ G and v ∈ V :

gφ(v) = φ(gv)

Definition: A subrepresentation of a representation V is a vector subpace of W of V which is
invariant under G.

Definition: A representation V is called irreducible if there is no proper nonzero invariant sub-
space W of V .

Given two represetnations, the direct sum V ⊕W and the tensor product V ⊗W are also repre-
sentations. The latter is given by:

g(v ⊗ w) = gv ⊗ gw

Similarly, the nth tensor power can be constructed from a representation, and similarly the exte-
rior powers and symmetric powers as subrepresentations.

1.1 Duals and Tensor Products of Representations; Representation of
Hom(V,W )

The dual V ∗ of a vector space is a representation as well. We wish to respect the natural pairing
between V ∗ and V , given by:

⟨v∗, v⟩ = v∗(v)

So we need to define the dual representation such that:

⟨ρ∗(g)v∗, ρ(g)v⟩ = ⟨v∗, v⟩

And this forces us to define the representation as follows. Note that by the definition of the
transpose:

ρ(g−1)T v∗(gv) = v∗(g−1gv) = v∗(v)

So we define:
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ρ∗(g) = ρ(g−1)T : V ∗ → V ∗

Now that we have defined the dual and the tensor product of representations, we can show that
Hom(V,W ) is a representation. Note that there is a natural identification:

V ∗ ⊗W → Hom(V,W )a∗ ⊗ b → (v 7→ a∗(v)b)

It is not hard to show that this identification is surjective and injective, and hence an isomorphism
of vector spaces. Now, we take an arbitrary element a∗ ⊗ b ∈ V ∗ ⊗W . We identify this element
naturally with φ ∈ Hom(V,W ):

φ : v 7→ a∗(v)b

Now we consider gφ = g(a∗ ⊗ b). We have:

g(a∗ ⊗ b) = ga∗ ⊗ gb = (g−1)Ta∗ ⊗ gb

Where we have used the definition of the dual representation. By the natural identification again
we have:

gφ : v 7→ (g−1)Ta∗(v)gb = ga∗(g−1v)b

But this is simply telling us that:

(gφ)(v) = gφ(g−1v)

And this gives us the representation of the space Hom(V,W ).

Proposition 1

The vector space of G-linear maps between two representations V,W of G is the
subspace of Hom(V,W ) which is fixed by G, often denoted HomG(V,W )

Note that if we have a G-linear map φ, then by definition:

gφ(v) = φ(gv)

Note that the representation of Hom(V,W ) however is given by:

(gφ)(v) = gφ(g−1v) = φ(gg−1v) = φ(v)

So indeed φ is fixed under the action of G. The converse holds evidently as well; if φ is fixed by
G, then it follows that φ is G-linear.
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Finally, if X is any finite set and G acts on X, then G naturally is embedded into the permutation
group Aut(X) of X. So we can construct a vector space with basis
ex : x ∈ X and the action of G is then given by:

g
∑

axex =
∑

axegx

Definition: The regular representation RG or R corresponds to the action of G on itself. We
could alternatively define it as the space of complex-valued functions on G where:

(gα)(h) = α(g−1h)

To prove that these are equivalent, we identify ex with the function fx which takes the value 1 on
x and 0 elsewhere. Then we have:

(gfx)(h) = fx(g
−1h)

And evidently this function takes value 1 where g−1h = x or equivalently h = gx. Thus we can
write:

(gfx) = fgx

1.2 Complete Reducibility; Schur’s Lemma

Proposition 2 (Maschke’s Theorem)

If W is a subrepresentation of a representation V of a finite group G, then there is a
complementary invariant subspace W ′ of V , so that V = W ⊕W ′

We define the complement as follows. Chose an arbitary subspace U which is complementary
to W . Then we can write:

V ∼= W ⊕ U

So for any v ∈ V , we can identify it with some pair (w, u). Define the natural projection map
π0 : V 7→ W as:

π0(w, u) = w

This map is G-linear. Then, we define a new map π:

π(v) =
∑
g∈G

gπ0(g
−1v)

Since π0 is G-linear, it follows that this map is G linear. In fact on W , we have:
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π(w) =
∑
g∈G

gπ0(g
−1w) =

∑
g∈G

gg−1π0(w) = |G|w

So this map is nothing more than multiplication by ∥G∥ onW . Therefore, its kernel is a subspace
of V which is invariant under G and is complementary to W .

Corollary

Any representation is a direct sum of irreducible representations.

Now we move on to Schur's Lemma, one of the more useful theorems in basic representation
theory.

Proposition 3 (Schur’s Lemma)

If V,W are irreducible representations of G and φ : V → W is a G-module homomor-
phism, then: - Either φ is an isomorphism, of φ = 0. - If V = W , then φ = λI for some
λ ∈ C.

The first claim follows from the fact that if φ is a module homomorphism, then its kernel and
image are subspaces of V,W respectively. Furthermore, for v ∈ kerφ:

φ(gv) = gφ(v) = 0

So that the kernel is invariant under G. Similarly, for φ(v) in the image we have:

gφ(v) = φ(gv)

And so gφ(v) also lies in the image. Thus, we have shown the kernel and image of φ are subrep-
resentations of V and W respectively. The only possibilities are that the kernel is trivial and the
image is W (yielding an isomorphism), or the kernel is V and the image is trivial (i.e. φ = 0).

To prove the second claim, φmust have an eigenvalue λ so that φ−λI has nonzero kernel. But if
the kernel is nonzero, then by the above argument, the kernel is the V . So identically we indeed
have:

φ− λI = 0

Proposition 4

For any representation V of a finite group G, there is a decomposition:

V = V ⊕a1
1 ⊕ · · · ⊕ V ⊕ak

k

Where Vi are distinct irreducible representations. The decomposition is furthermore
unique.
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This is a straightforward consequence of Schur's Lemma. Occasionally this decomposition is
written:

V = a1V1 ⊕ · · · ⊕ akVk = a1V1 + · · ·+ akVk

Where the ai denote multiplicities.

1.3 Examples: Abelian Groups; S3

In general,if V is a repreentation of a finite group G, then each g ∈ G gives a map ρ(g) : V → V .
However, in general, this map is not a G-module homomorphism (G-linear), i.e. in general we do
not have:

g(h(v)) = h(g(v))

Indeed, ρ(g) is G-linear for every ρ iff g is in Z(G). Then g commutes with h and the above holds.
In particular if G is abelian, the above holds. But if V is an irreducible representation, by Schur's
Lemma each g ∈ G acts on V by a scalar multiple, so every subspace is invariant. Thus, V is one
dimensional.

Therefore, the irreducible representations of an abelian groupG correspond to homomorphisms:

ρ : G → C

Next, we look at S3. There are two one dimensional representations, given by the trivial repre-
sentation (U ) and the alternating representation U ′ given by:

gv = sgn(g)v

Naturally, we ask if there are any others. Since G is a permutation group, it has a natural permu-
tation representation, where it acts on C3 by permuting the basis vectors. The representation
is not irreducible since it has the invariant subspace spanned by (1, 1, 1). The complementary
subspace is given by:

V = {(z1, z2, z3) : z1 + z2 + z3 = 0}

And this is irreducible since it has no invariant subspaces. It is called the standard representation.

In general, we take a representaiton W of S3 and look at the action of the abelian subgroup
Z/3 on W . If τ is a generator of this subgroup (a 3-cycle), then the space W is spanned by
eigenvectors for the action of τ . Furthermore, since τ3 = 1, the eigenvalues are all third roots of
unity. We write τ(v) = ωiv where ωi is one of the roots of unity.

Let σ be a transposition in S3. Then we have the relation:

στσ = τ2
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So therefore we can write:

τ(σ(v)) = σ(τ2(v))

= σ(ω2iv)

= ω2iσ(v)

So if v is an eigenvector for τ with eigenvalue ωi, then σ(v) is an eigenvector for τ with eigenvalue
ω2i.

If v is an eigenvector of τ with eigenvalue ωi ̸= 1, then σ(v) is an eigenvector with a different
eigenvalue and hence independent. Thus, v, σ(v) span a two dimensional subspace of W which
is invariant under S3.

On the other hand, if wi = 1, then σ(v) may or may not be linearly independent to v. If it is
not, then v spans a one-dimensional subrepresentation, isomorphic to the trivial representation
if σ(v) = v and the alternating representation if σ(v) = −v. If σ(v) and v are linearly independent,
then v + σ(v) and v − σ(v) span one dimensional represnetations of W isomorphic to the trivial
and alternating representations, respectively.

This is not the best approach to find the decomposition of any representation of S3, but it is one
way to do it.
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