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We know that the following holds for sequences in a metric space, if f is continuous:

lim
n→∞

f(xn) = f( lim
n→∞

xn)

The weakest form of convergence is pointwise convergence.

Definition: fn → f pointwise if for every x and for every ϵ > 0, there exists N so that if n ≥ N
then d(fn(x), f(x)) < ϵ.

But this definition does not allow us to swap the order of limits.

A stronger condition, however, does allow this:

Definition: fn → f pointwise if for every ϵ > 0, there exists N so that for all x, if n ≥ N then
d(fn(x), f(x)) < ϵ.

The key distinction here is that the value of N works for all x. As alluded to earlier, we have the
following proposition.

Proposition

A sequence of continuous functions converges uniformly to a continuous function.

Corollary

lim
n→∞

lim
x→x0

fn(x) = lim
x→x0

lim
n→∞

f(x)

We also have this nice theorem:

Proposition

Let fn be a sequence of continuous functions which converge uniformly to f . Then
for any sequence xn which converges to x, fn(xn) converges to f(x).

Similarly, uniform limits preserve boundedness in a nice way.

Proposition

A sequence of bounded functions converges uniformly to a bounded function.

3.1 Metrics of Uniform Convergence

Definition: Let X,Y be metric spaces. Let B(X → Y ) denote the space of bounded functions
from X → Y . We let:

d∞(f, g) = sup
x∈X

d(f(x), g(x))
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This is called the L∞ metric or the ``sup norm'' metric. Since f, g are assumed bounded in this
space, d(f, g) is bounded.

This space with this norm has the nice property that convergence in this space directly correlates
with uniform convergence in the regular sense.

Proposition

Let fn be a sequence of functions in B(X → Y ); then fn converges to f ∈ B(X → Y )
if and only if fn converges to f uniformly.

In particular, we define the continuous and bounded functions.

Definition: C(X → Y ) is the space of bounded and continuous functions from X to Y . This a
closed subspace of B(X → Y )

And finally, we have Cauchy sequences:

Proposition

If Y is a complete metric space, then the space C(X → Y ) is a complete subspace of
B(X → Y ).

3.2 The Weierstrass M-Test

Definition: A series of functions fn converges pointwise to f(x) if the partial sums converge
pointwise to f(x)

In a similar way we have uniform convergence:

Definition: A series of functions fn converges uniformly to f(x) if the partial sums converge
uniformly to f(x)

We can find an easy condition for uniform convergence using the following norm:

Definition: If f : X → R is a bounded function, define the sup norm to be the number:

|f |∞ = sup
x∈X

f(x)

And finally we have the immensely useful Weierstrass M -Test:

Theorem

Let fn be a series of bounded real-valued functions such that
∞∑

n=1
|fn|∞ is convergent.

Then the series
∞∑

n=1
fn converges uniformly to a continuous function f on X.
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3.3 Uniform Convergence & Integration/Differentation

Theorem

Let [a, b] be an interval and fn Riemann integrable functions. Suppose fn converges
uniformly on [a, b] to a function f . Then f is also Riemann integrable and:

lim
n→∞

∫
[a,b]

fn =

∫
[a,b]

lim
n→∞

fn =

∫
[a,b]

f

An analogy of this theorem exists for series.

Corollary

Let [a, b] be a an interval. Let fn be a sequence of Riemmann integrable functions on
[a, b] such that the series

∞∑
n=1

fn is uniformly convergent. Then we can say:

∞∑
n=1

∫
[a,b]

fn =

∫
[a,b]

∞∑
n=1

fn

3.3.1 Derivatives and Uniform Convergence

We ask if the same is true for derivatives. If fn converges uniformly to f , then if we require fn to
be differentiable is f differentiable? And do f ′

n converge to f ′? In general, the answer is no.

As a counterexample consider:

fn(x) = n1/2 cosnx

This sequences converges uniformly to 0 if we look at the sup norm. However, its derivative at
the origin is never 0. Thus, f ′

n need not converge to f ′.

Similarly, consider the sequence:

fn(x) =

√
x2 +

1

n2

We can check that this sequence converges uniformly to |x|, which is not differentiable at the
origin. This, however, is the theorem we're looking for -- it gives us more or less the converse,
so long as we have pointwise convergence at least at one point.

Theorem

Let [a, b] be an interval and fn be differentiable functions with continuous derivative on
the interval. Suppose the derivatives f ′

n converge uniformly to a function g : [a, b] →
R.

4



Suppose also that there exists a point x0 so that the limit lim
n→∞

fn(x0) exists (i.e. we
have pointwise convergence at some point). Then the functions fn converge uni-
formly to a differentiable function f such that the derivative f ′ = g.

Corollary

Let [a, b] be an interval and fn be differentiable functions with continuous derivative
on the interval. Suppose the series

∞∑
n=1

|f ′
n| converges absolutely.

Suppose also that there exists a point x0 so that
∞∑

n=1
fn(x0) converges. Then the series∑

n→∞
fn converges uniformly on [a, b] to a differentiable function f such that:

d

dx

∑
n→∞

fn(x) =
∑
n→∞

d

dx
fn(x)

Example Let f : R → R be the function:

f(x) =
∞∑

n=1

4−n cos(32nπx)

This series is uniformly convergent (Weierstrass M-Test) and continuous, but nowhere differen-
tiable.
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