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A group is a set together with a binary operation (multiplication) so that:

• Multiplication is associative.

• There is an identity e so that eg = ge = g.

• For each g there is an inverse g−1 so that gg−1 = g−1g = e.

• The group is closed under multiplication.

The order of an element a is the minimum integer n so that an = e. The subgroup consisting of
all elements of the group of finite order is called the torsion subgroup.

Example An important example of a group is the dihedral group Dn. It is generated by two
kinds of elements: rotations, and reflections. It describes the symmetries of an n-gon with com-
position. The two kinds of elements are respectively described as:

rn = es2 = esrs = r−1

D1 is for example defined as
1, r so it is simply Z/2Z. On the other hand, D2 =
1, r, s, rs is not cyclic; it is called the Klein group or the 4-group, which is distinct from Z/4Z.

0.1 The General Linear Group

An important group is the general group GL(V ). For an n-dimensional vector space V over a
field, we can think of GL(V ) as the set of n × n matrices over a field with nonzero determinant
-- with multiplication defined in the usual way (once we fix a basis).

A bilinear form ϕ : V × V → F that is linear in each variable. An automorphism of ϕ is is an
isomorphism α : V → V so that:

ϕ(αv, αw) = ϕ(v, w)

With a choice of a basis, we can restate this condition in terms of the matrix for α and the matrix
P for ϕ:

(Av)T · PAw = vTPw

vTATPAw = vTPw

So:

ATPA = P

In particular, if ϕ is symmetric, i.e.:

ϕ(v, w) = ϕ(w, v)
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Then we have the following definition.

Definition: For a symmetric non-degenerate bilinear form ϕ, define its automorphism group
Aut(ϕ) to be the isomorphisms α so that ϕ(αv, αw) = ϕ(v, w). This is called the orthogonal
group of ϕ.

Definition: For a skew-symmetric non-degenerate bilinear form ϕ, define its automorphism
group Aut(ϕ) to be the isomorphisms α so that ϕ(αv, αw) = ϕ(v, w). This is called the sym-
plectic group of ϕ.

In this case, we can write ϕ in some basis as the matrix:

J2m =

[
0 Im

−Im 0

]

Where 2m = n. Therefore, the symplectic group condition simply means a matrix has the prop-
erty:

ATJ2mA = J2m

0.2 Subgroups

A subgroup is a subset of a group which is closed under multiplication and inverses, and which
contains the identity. A particularly important is called the center of a group.

Definition: The center of a group G, denoted Z(G) consists of all the elements which commute
with all of G, i.e.:

Z(G) = {z ∈ G : zx = xz ∀x ∈ G}

Proposition

An intersection of subgroups is a subgroup.

The proof here is fairly straightforward.

We can talk about the cosets of a subgroup H as elements of the form aH for some a ∈ G,
where:

aH = {ah : h ∈ H}

Cosets are well-defined, and are either disjoint or equal. Suppose that a inbH, then we can say
for some h ∈ H:

a = bhaH = bhH = bH

So that means we can write a coset as aH for any choice of representative a. By the above
argument, if two cosets share a single element, they are the same set. Finally, we can map aH
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to bH via multiplication by ba−1 (and conversely, map from bH to aH via multiplication by ab−1).
Thus, all the cosets are the same size.

Definition: The index of a subgroupH ofG is the number of left cosets ofH inG, and is denoted
(G : H).

Proposition (Lagrange’s Theorem)

The order of a subgroup divides the order of the group.

We have:

|G| = (G : H)|H|

Therefore, |H| divides |G|.

As a corollary, we consider the group generated by a certain element a. It has size n, where n
is the order of a, and forms a subgroup. Thus, the order of any element in a group divides the
order of the group.

We also have the following ``cancellation'' theorem. IfH is a subgroup of G andK is a subgroup
of H, we have:

(G : K) = (G : H)(H : K)

0.3 Homomorphisms

Definition: A homomorphism between groups G,G′ is a map φ : G → G′ so that φ(ab) =
φ(a)φ(b). In a sense, a homomorphism preserves the structure of the group. If a homomorphism
is bijective, we say that it is an isomorphism.

0.3.1 Cayley’s Theorem

An important theorem is Cayley's Theorem, which says we can think of each group as a subgroup
of a permutation group. For a ∈ G, define the map:

ϕa : G → Gϕa(b) = ab

Thus, the map ϕa is just multiplication by A. We can also show that it is a bijection, since we
have:

ϕa ◦ ϕa−1(b) = ϕa(a
−1b) = aa−1b = b

And in fact we can say that: - Each ϕa is a bijection from G to G, hence ϕa ∈ S∥G∥, the symmetric
group or group of permutations of G. - The map Φ : a 7→ ϕa is an injective map from G to S∥G∥.

So this brings us to Cayley's Theorem:

Any finite group is a subgroup of a symmetric group.
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0.4 Normal Subgroups

Definition: A subgroupN of a groupG is normal if gNg−1 = N for all g ∈ G. A normal subgroup
is denoted N ⊴ G.

It is sufficient to check that gNg−1 ⊂ N for each g, since multiplying gives us Ng−1 = g−1N =⇒
N ⊆ g−1Ng, and substituting g = g−1 we get the reverse inclusion.

Note however, that we can find a subgroup N and an element g so that gNg−1 ⊂ N with strict
inequality; however, if this holds for all g, then we indeed have a normal subgroup.

Proposition

Every subgroup of index two is normal.

SupposeH is a subgroup of index two. Pick g ∈ G which is not inH. then gH is the complement
of H. Similarly, Hg is the complement of H. So we have gH = Hg. Then gHg−1 = H.

Definition: A group is simple if it has no normal subgroups other than itself and the trivial
subgroup.

Proposition

Suppose H, N are subgroups of G and N is a normal subgroup. Then HN = {hn :
h ∈ H,n ∈ N} is a subgroup of G. If H is also a normal subgroup, then HN is a
normal subgroup of G.

Note that gNg−1 = N , so that we can write gN = Ng. For any n ∈ N , we can write gn = n′g
where n′ ∈ N .

Taking h1n1, h2n2 ∈ HN , we have:

(h1n1)(h2n2) = h1h2n
′
1n2 ∈ HN

So indeed HN is closed under multiplication. It contains the identity automatically, and we can
check inverses:

(hn)−1 = n−1h−1 = h−1n′−1 ∈ HN

So indeed HN is a subgroup.

If H,N are both normal, we can write:

gHNg−1 = gHg−1gNg−1 = HN

And we are done. We can also define the normal subgroup generated by any set in G.

Definition: For any set X ⊂ G, the smallest normal subgroup generated by X is exactly:

∪
g∈G

gXg−1
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Theorem

A subgroup N of G is normal iff it is the kernel of some homomorphism.

Evidently, the kernel of a homomorphism is a normal subgroup since for any x ∈ kerφ:

φ(gxg−1) = φ(g)eφ(g)−1 = e

Conversely, we map g 7→ gN , i.e. map to cosets. We just need to show that G/N has a group
structure which is preserved by this map. Define (aN)(bN) = (ab)N . We need to show that this
multiplication is well defined.

Suppose that aN = a′N and bN = b′N . Then we can show:

abN = a(bN) = ab′N = aNb′ = a′Nb′ = a′b′N

Where we use freely here that aN = Na by the fact that N is a normal subgroup. So indeed this
map is well defined, and preserves the group structure, and its kernel is evidently N . We call
G/N the quotient of G by N .

0.5 The Isomorphism Theorems

As per usual, we have the isomorphism theorems.

First Isomorphism Theorem

Let φ : G → G′ be a homomorphism of groups. Then:

G

kerφ
∼= φ(G)

And since kerφ is a normal subgroup by the above discussion, we have that φ(G) is a subgroup
of G′.

Second Isomorphism Theorem

Let S be a subgroup of G, and N a normal subgroup of G. Then: - SN is a subgroup
of G. - S ∩N is a normal subgroup of S. - SN

N
∼= S

S∩N .

Third Isomorphism Theorem

Suppose K,N are normal subgroups of G with N ⊆ K ⊆ G. Then:

G/N

K/N
∼=

G

K

Furthermore, we have the following correspondences from the third isomorphism theorem:

6



“Fourth” Isomorphism Theorem

Suppose N is a normal subgroup of G. Then there is a correspondence between
subgroups K of G which contain N and subgroups of G/N , given by:

K ↔ kN

Where k ∈ K is a representative. Similarly, the same bijection gives a correspondence
between normal subgroups K of G which contain N and normal subgroups of G/N .
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