Group Theory, Part I: Definitions and Basics *Jay Havaldar*

A **group** is a set together with a binary operation (multiplication) so that:

- Multiplication is associative.
- There is an identity *e* so that $eg = ge = g$.
- For each g there is an inverse g^{-1} so that $gg^{-1}=g^{-1}g=e$.
- The group is closed under multiplication.

The **order** of an element a is the minimum integer n so that $a^n = e$. The subgroup consisting of all elements of the group of finite order is called the **torsion subgroup**.

Example An important example of a group is the dihedral group *Dn*. It is generated by two kinds of elements: rotations, and reflections. It describes the symmetries of an *n*-gon with composition. The two kinds of elements are respectively described as:

$$
r^n = es^2 = esrs = r^{-1}
$$

*D*¹ is for example defined as

1, *r* so it is simply $\mathbb{Z}/2\mathbb{Z}$. On the other hand, $D_2 =$

 $1, r, s, rs$ is not cyclic; it is called the **Klein** group or the 4-group, which is distinct from $\mathbb{Z}/4\mathbb{Z}$.

0.1 The General Linear Group

An important group is the general group *GL*(*V*). For an *n*-dimensional vector space *V* over a field, we can think of *GL*(*V*) as the set of *n × n* matrices over a field with nonzero determinant -- with multiplication defined in the usual way (once we fix a basis).

A **bilinear form** $\phi: V \times V \rightarrow F$ that is linear in each variable. An **automorphism** of ϕ is is an isomorphism $\alpha: V \to V$ so that:

$$
\phi(\alpha v, \alpha w) = \phi(v, w)
$$

With a choice of a basis, we can restate this condition in terms of the matrix for *α* and the matrix *P* for *ϕ*:

$$
(Av)^{T} \cdot PAw = v^{T} P w
$$

$$
v^{T} A^{T} P A w = v^{T} P w
$$

So:

$$
A^T P A = P
$$

In particular, if *ϕ* is **symmetric**, i.e.:

$$
\phi(v, w) = \phi(w, v)
$$

Then we have the following definition.

Definition: For a symmetric non-degenerate bilinear form ϕ , define its automorphism group *Aut*(ϕ) to be the isomorphisms α so that $\phi(\alpha v, \alpha w) = \phi(v, w)$. This is called the **orthogonal group** of *ϕ*.

Definition: For a skew-symmetric non-degenerate bilinear form *ϕ*, define its automorphism group $Aut(\phi)$ to be the isomorphisms α so that $\phi(\alpha v, \alpha w) = \phi(v, w)$. This is called the **symplectic group** of *ϕ*.

In this case, we can write ϕ in some basis as the matrix:

$$
J_{2m} = \begin{bmatrix} 0 & I_m \\ -I_m & 0 \end{bmatrix}
$$

Where $2m = n$. Therefore, the symplectic group condition simply means a matrix has the property:

$$
A^T J_{2m} A = J_{2m}
$$

0.2 Subgroups

A subgroup is a subset of a group which is closed under multiplication and inverses, and which contains the identity. A particularly important is called the center of a group.

Definition: The **center** of a group *G*, denoted *Z*(*G*) consists of all the elements which commute with all of *G*, i.e.:

$$
Z(G) = \{ z \in G \; : \; zx = xz \; \forall x \in G \}
$$

Proposition

An intersection of subgroups is a subgroup.

The proof here is fairly straightforward.

We can talk about the **cosets** of a subgroup *H* as elements of the form aH for some $a \in G$, where:

$$
aH = \{ah \; : \; h \in H\}
$$

Cosets are well-defined, and are either disjoint or equal. Suppose that *a inbH*, then we can say for some $h \in H$:

$$
a = bhaH = bhH = bH
$$

So that means we can write a coset as *aH* for any choice of representative *a*. By the above argument, if two cosets share a single element, they are the same set. Finally, we can map *aH*

to *bH* via multiplication by *ba−*¹ (and conversely, map from *bH* to *aH* via multiplication by *ab−*¹). Thus, all the cosets are the same size.

Definition: The **index** of a subgroup *H* of *G* is the number of left cosets of *H* in *G*, and is denoted $(G : H)$.

Proposition (Lagrange's Theorem)

The order of a subgroup divides the order of the group.

We have:

$$
|G| = (G : H)|H|
$$

Therefore, *|H|* divides *|G|*.

As a corollary, we consider the group generated by a certain element *a*. It has size *n*, where *n* is the order of *a*, and forms a subgroup. Thus, the order of any element in a group divides the order of the group.

We also have the following "cancellation" theorem. If *H* is a subgroup of *G* and *K* is a subgroup of *H*, we have:

$$
(G:K) = (G:H)(H:K)
$$

0.3 Homomorphisms

Definition: A **homomorphism** between groups G, G' is a map $\varphi : G \to G'$ so that $\varphi(ab) =$ $\varphi(a)\varphi(b)$. In a sense, a homomorphism preserves the structure of the group. If a homomorphism is bijective, we say that it is an **isomorphism**.

0.3.1 Cayley's Theorem

An important theorem is Cayley's Theorem, which says we can think of each group as a subgroup of a permutation group. For $a \in G$, define the map:

$$
\phi_a: G \to G\phi_a(b) = ab
$$

Thus, the map *ϕ^a* is just multiplication by *A*. We can also show that it is a bijection, since we have:

$$
\phi_a \circ \phi_{a^{-1}}(b) = \phi_a(a^{-1}b) = aa^{-1}b = b
$$

And in fact we can say that: - Each ϕ_a is a bijection from *G* to *G*, hence $\phi_a \in S_{\|G\|}$, the symmetric group or group of permutations of *G*. - The map $\Phi : a \mapsto \phi_a$ is an injective map from *G* to $S_{\|\mathcal{G}\|}$.

So this brings us to Cayley's Theorem:

Any finite group is a subgroup of a symmetric group.

0.4 Normal Subgroups

Definition: A subgroup *N* of a group *G* is normal if $qNq^{-1} = N$ for all $q \in G$. A normal subgroup is denoted $N \triangleleft G$.

It is sufficient to check that *gNg−*¹ *⊂ N* for each *g*, since multiplying gives us *Ng−*¹ = *g [−]*¹*N* =*⇒ N* ⊆ $g^{-1}Ng$, and substituting $g = g^{-1}$ we get the reverse inclusion.

Note however, that we can find a subgroup *N* and an element *g* so that *gNg−*¹ *⊂ N* with strict inequality; however, if this holds for all *g*, then we indeed have a normal subgroup.

Proposition

Every subgroup of index two is normal.

Suppose *H* is a subgroup of index two. Pick $g \in G$ which is not in *H*. then gH is the complement of *H*. Similarly, *Hq* is the complement of *H*. So we have $qH = Hq$. Then $qHq^{-1} = H$.

Definition: A group is **simple** if it has no normal subgroups other than itself and the trivial subgroup.

Proposition

Suppose *H*, *N* are subgroups of *G* and *N* is a normal subgroup. Then $HN = \{hn :$ $h \in H, n \in N$ } is a subgroup of *G*. If *H* is also a normal subgroup, then $H\tilde{N}$ is a normal subgroup of *G*.

Note that $gNg^{-1} = N$, so that we can write $gN = Ng$. For any $n \in N$, we can write $gn = n'g$ where $n' \in N$.

Taking $h_1n_1, h_2n_2 \in HN$, we have:

$$
(h_1n_1)(h_2n_2) = h_1h_2n'_1n_2 \in HN
$$

So indeed *HN* is closed under multiplication. It contains the identity automatically, and we can check inverses:

$$
(hn)^{-1} = n^{-1}h^{-1} = h^{-1}n'^{-1} \in HN
$$

So indeed *HN* is a subgroup.

If *H, N* are both normal, we can write:

$$
gHNg^{-1} = gHg^{-1}gNg^{-1} = HN
$$

And we are done. We can also define the normal subgroup generated by any set in *G*.

Definition: For any set $X \subset G$, the smallest normal subgroup generated by *X* is exactly:

$$
\bigcup_{g \in G} gXg^{-1}
$$

Theorem

A subgroup *N* of *G* is normal iff it is the kernel of some homomorphism.

Evidently, the kernel of a homomorphism is a normal subgroup since for any $x \in \text{ker } \varphi$:

$$
\varphi(gxg^{-1}) = \varphi(g)e\varphi(g)^{-1} = e
$$

Conversely, we map $g \mapsto gN$, i.e. map to cosets. We just need to show that G/N has a group structure which is preserved by this map. Define $(aN)(bN) = (ab)N$. We need to show that this multiplication is well defined.

Suppose that $aN = a'N$ and $bN = b'N$. Then we can show:

$$
abN = a(bN) = ab'N = aNb' = a'Nb' = a'b'N
$$

Where we use freely here that $aN = Na$ by the fact that N is a normal subgroup. So indeed this map is well defined, and preserves the group structure, and its kernel is evidently *N*. We call *G*/*N* the **quotient** of *G* by *N*.

0.5 The Isomorphism Theorems

As per usual, we have the isomorphism theorems.

First Isomorphism Theorem

Let φ : $G \to G'$ be a homomorphism of groups. Then:

$$
\frac{G}{\ker \varphi} \cong \varphi(G)
$$

And since ker φ is a normal subgroup by the above discussion, we have that $\varphi(G)$ is a subgroup of *G′* .

Second Isomorphism Theorem

Let *S* be a subgroup of *G*, and *N* a normal subgroup of *G*. Then: - *SN* is a subgroup of *G*. - *S* ∩ *N* is a normal subgroup of *S*. - $\frac{SN}{N} \cong \frac{S}{S \cap N}$.

Third Isomorphism Theorem

Suppose *K, N* are normal subgroups of *G* with $N \subseteq K \subseteq G$. Then:

$$
\frac{G/N}{K/N} \cong \frac{G}{K}
$$

Furthermore, we have the following correspondences from the third isomorphism theorem:

"Fourth" Isomorphism Theorem

Suppose *N* is a normal subgroup of *G*. Then there is a correspondence between subgroups *K* of *G* which contain *N* and subgroups of *G*/*N*, given by:

$K \leftrightarrow kN$

Where *k ∈ K* is a representative. Similarly, the same bijection gives a correspondence between normal subgroups *K* of *G* which contain *N* and normal subgroups of *G*/*N*.