Module Theory, Part II: Generation of Modules, Direct Sums, and Free Modules

Jay Havaldar

Definition: Let R be a ring with identity, and N_1, \ldots, N_n are modules over R. Then: $-N_1 + \cdots + N_n$ consists of all finite sums of elements $\{n_1 + \cdots + n_n\}$ so that $n_i \in N_i$. - For any subset A of M let $RA = \{r_1a_1 + \cdots + r_na_n\}$ so that $r_i \in R$, $a_i \in A$ and $m \in \mathbb{Z}$. By convention, if $A = \emptyset$ then we define $RA = \{0\}$. Indeed if $A = \{a_1, \ldots, a_n\}$ then we can write $RA = Ra_1 + \cdots + Ra_n$ and say that RA is the **submodule generated by** A. - A submodule N of M is finitely generated if there is some finite subset A of M so that N = RA. - A submodule N is cyclic if N = Ra for some element $a \in M$.

Note that if R has identity, then RA = A.

Examples

- For a \mathbb{Z} -module, modules generated by $A \subset M$ are just subgroups generated by A.
- A ring R with identity is a cyclic module generated by 1. Any submodule is an ideal. In particular, a submodule which is cyclic is exactly a principal ideal. In particular, a PID is just a (commutative) integral domain with identity so that every R-submodule of R is cyclic.
- Let F be a field and consider an F[x] module V, which is identified with the action of x. Then to say that V is a cyclic F[x]-module is spanned by:

$$\{v, T(v), T^2(v), \dots\}$$

For some $v \in V$ as a vector space over F.

Definition: Let M_1, \ldots, M_k be a collection of *R*-modules. Then we define the direct product:

$$M_1 \times \cdots \times M_k$$

Which consists of all the k-tuples of the modules, and it is clearly also an R-module. With a finite number k, we say that the direct sum $M_1 \oplus \times \oplus M_k$ is their direct product.

Proposition

TFAE: - The map $\pi : N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$ is defined by $\pi : (a_1, \ldots, a_k) \mapsto a_1 + \cdots + a_k$. π is an isomorphism. - $N_j \cap (N_1 + \cdots + N_{j-1} + N_{j+1} + \ldots + N_k) = 0$ for any choice of j. - Every $x \in N_1 + \cdots + N_k$ can be written uniquely as $a_1 + \cdots + a_k$ for $a_i \in N_i$.

Definition: An *R*-module *F* is called free on the subset *A* of *F* if for every nonzero $x \in F$, there exist unique nonzero elements $r_1, \ldots, r_n \in R$ so that:

$$x = r_1 a_1 + \dots r_n a_n$$

And in this case, we say that A is a **basis** or a set of generators for F. If R is a commutative ring, the size of A is called the rank of F.

An important distinction here is that r_i as well as a_i are unique, whereas in a direct sum only a_i are unique.

0.0.1 Theorem

For any set A there is a free R-module F(A) on the set A. If M is any R-module and $\varphi : A \to M$ a set map, then there is a unique module homomorphism Φ so that the following diagram commutes (where j denotes the inclusion of A into F(A)).

When A is a finite set, we simply define $F(A) = Ra_1 \oplus \cdots \oplus Ra_n \cong R^n$ (if R has identity).

The proof is as follows. First, let $F(A) = \{0\}$ if $A = \emptyset$. Otherwise, let F(A) be the set of all (set) functions $f : A \to R$ so that f(a) = 0 for all but finitely many a.

Indeed, we can see A as being included in F(A) by constructing the function f_a such that $f_a(a) = 1$ and $f_a(b) = 0$ for all $b \neq a$. In this way, we can think of F(A) as all (finite) linear combinations of elements of the form f_a which can be identified with the elements of A. And indeed F(A) has a unique expression as such a formal sum. This is a module in the obvious way.

Now, suppose that $\varphi(A)$ is a map from the set A into an R-module M. Then we can define a map $\Phi: F(A) \to M$ by:

$$\varphi: \sum_{i=1}^n r_i a_i \mapsto \sum_{i=1}^n r_i \varphi(a_i)$$

Since elements of F(A) have unique representations in this form, this map is well-defined. And by definition, restricting Φ to A yields exactly φ as a module homomorphism. And Φ is unique because it must respect the module homomorphism axioms.

When A is the finite set $\{a_1, \ldots, a_n\}$, then we have that $F(A) = Ra_1 \oplus \times \oplus Ra_n$. And indeed we can say that $R \cong Ra_i$ under the map $r \mapsto ra_i$. Therefore, the free R-module of a set of size n is simply R^n (in a sense, the "simplest" module).

Corollary

- If F_1, F_2 are free modules over A there is a unique isomorphism between them which is the identity on A.
- If F is any free R-module with basis A, then $F \cong F(A)$.

This is essentially the statement that universal objects are unique.