Module Theory, Part II: Generation of Modules, Direct Sums, and Free Modules

Jay Havaldar

Definition: Let *R* be a ring with identity, and N_1, \ldots, N_n are modules over *R*. Then: $N_1 + \cdots + N_n$ consists of all finite sums of elements $\{n_1 + \cdots + n_n\}$ so that $n_i \in N_i$. - For any subset A of M let $RA = \{r_1a_1 + \cdots + r_na_n\}$ so that $r_i \in R$, $a_i \in A$ and $m \in \mathbb{Z}$. By convention, if $A = \emptyset$ then we define $RA = \{0\}$. Indeed if $A = \{a_1, \ldots, a_n\}$ then we can write $RA = Ra_1 + \cdots + Ra_n$ and say that *RA* is the **submodule generated by** *A*. - A submodule *N* of *M* is finitely generated if there is some finite subset *A* of *M* so that $N = RA$. - A submodule *N* is cyclic if $N = Ra$ for some element $a \in M$.

Note that if *R* has identity, then $RA = A$.

Examples

- For a Z-module, modules generated by *A ⊂ M* are just subgroups generated by *A*.
- A ring *R* with identity is a cyclic module generated by 1. Any submodule is an ideal. In particular, a submodule which is cyclic is exactly a principal ideal. In particular, a PID is just a (commutative) integral domain with identity so that every *R*-submodule of *R* is cyclic.
- Let *F* be a field and consider an *F*[*x*] module *V* , which is identified with the action of *x*. Then to say that *V* is a cyclic $F[x]$ -module is spanned by:

$$
\{v, T(v), T^2(v), \dots\}
$$

For some $v \in V$ as a vector space over F .

Definition: Let *M*1*, . . . , M^k* be a collection of *R*-modules. Then we define the direct product:

$$
M_1\times\cdots\times M_k
$$

Which consists of all the *k*-tuples of the modules, and it is clearly also an *R*-module. With a finite number *k*, we say that the direct sum $M_1 \oplus \times \oplus M_k$ is their direct product.

Proposition

TFAE: - The map $\pi : N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$ is defined by $\pi : (a_1, \ldots, a_k) \mapsto$ *a*₁ + \cdots + *a*_{*k*}. *π* is an isomorphism. - *N*_{*j*} ∩ (*N*₁ + \cdots + *N*_{*j*-1} + *N*_{*j*+1} + \cdots *N*_{*k*}) = 0 for any choice of *j*. - Every $x \in N_1 + \cdots + N_k$ can be written uniquely as $a_1 + \cdots + a_k$ for $a_i \in N_i$.

Definition: An *R*-module *F* is called free on the subset *A* of *F* if for every nonzero $x \in F$, there exist unique nonzero elements $r_1, \ldots, r_n \in R$ so that:

$$
x = r_1 a_1 + \dots r_n a_n
$$

And in this case, we say that *A* is a **basis** or a set of generators for *F*. If *R* is a commutative ring, the size of *A* is called the rank of *F*.

An important distinction here is that *rⁱ* as well as *aⁱ* are unique, whereas in a direct sum only *aⁱ* are unique.

0.0.1 Theorem

For any set *A* there is a free *R*-module *F*(*A*) on the set *A*. If *M* is *any R*-module and $\varphi: A \to M$ a set map, then there is a unique module homomorphism Φ so that the following diagram commutes (where *j* denotes the inclusion of *A* into *F*(*A*)).

When A is a finite set, we simply define $F(A) = Ra_1 \oplus \cdots \oplus Ra_n \cong R^n$ (if R has identity).

The proof is as follows. First, let $F(A) = \{0\}$ if $A = \emptyset$. Otherwise, let $F(A)$ be the set of all (set) functions $f : A \to R$ so that $f(a) = 0$ for all but finitely many *a*.

Indeed, we can see *A* as being included in $F(A)$ by constructing the function f_a such that $f_a(a)$ = 1 and $f_a(b) = 0$ for all $b \neq a$. In this way, we can think of $F(A)$ as all (finite) linear combinations of elements of the form *f^a* which can be identified with the elements of *A*. And indeed *F*(*A*) has a unique expression as such a formal sum. This is a module in the obvious way.

Now, suppose that *φ*(*A*) is a map from the set *A* into an *R*-module *M*. Then we can define a map Φ : $F(A) \to M$ by:

$$
\varphi : \sum_{i=1}^n r_i a_i \mapsto \sum_{i=1}^n r_i \varphi(a_i)
$$

Since elements of *F*(*A*) have unique representations in this form, this map is well-defined. And by definition, restricting Φ to *A* yields exactly *φ* as a module homomorphism. And Φ is unique because it must respect the module homomorphism axioms.

When *A* is the finite set $\{a_1, \ldots, a_n\}$, then we have that $F(A) = Ra_1 \oplus \times \oplus Ra_n$. And indeed we can say that $R \cong Ra_i$ under the map $r \mapsto ra_i.$ Therefore, the free R -module of a set of size n is simply R^n (in a sense, the "simplest" module).

Corollary

- If *F*1*, F*² are free modules over *A* there is a unique isomorphism between them which is the identity on *A*.
- If *F* is any free *R*-module with basis *A*, then $F \cong F(A)$.

This is essentially the statement that universal objects are unique.