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Definition: LetR be a ring with identity, andN1, . . . , Nn aremodules overR. Then: -N1+· · ·+Nn

consists of all finite sums of elements {n1 + · · · + nn} so that ni ∈ Ni. - For any subset A of M
let RA = {r1a1 + · · ·+ rnan} so that ri ∈ R, ai ∈ A and m ∈ Z. By convention, if A = ∅ then we
define RA = {0}. Indeed if A = {a1, . . . , an} then we can write RA = Ra1 + · · · + Ran and say
that RA is the submodule generated by A. - A submodule N of M is finitely generated if there
is some finite subset A of M so that N = RA. - A submodule N is cyclic if N = Ra for some
element a ∈ M .

Note that if R has identity, then RA = A.

Examples

• For a Z-module, modules generated by A ⊂ M are just subgroups generated by A.

• A ring R with identity is a cyclic module generated by 1. Any submodule is an ideal. In
particular, a submodule which is cyclic is exactly a principal ideal. In particular, a PID is just
a (commutative) integral domain with identity so that every R-submodule of R is cyclic.

• Let F be a field and consider an F [x] module V , which is identified with the action of x.
Then to say that V is a cyclic F [x]-module is spanned by:

{v, T (v), T 2(v), . . . }

For some v ∈ V as a vector space over F .

Definition: Let M1, . . . ,Mk be a collection of R-modules. Then we define the direct product:

M1 × · · · ×Mk

Which consists of all the k-tuples of the modules, and it is clearly also an R-module. With a finite
number k, we say that the direct sum M1 ⊕×⊕Mk is their direct product.

Proposition

TFAE: - The map π : N1 × · · · ×Nk → N1 + · · · +Nk is defined by π : (a1, . . . , ak) 7→
a1 + · · ·+ ak. π is an isomorphism. - Nj ∩ (N1 + · · ·+Nj−1 +Nj+1 + . . . Nk) = 0 for
any choice of j. - Every x ∈ N1 + · · ·+Nk can be written uniquely as a1 + · · ·+ ak for
ai ∈ Ni.

Definition: An R-module F is called free on the subset A of F if for every nonzero x ∈ F , there
exist unique nonzero elements r1, . . . , rn ∈ R so that:

x = r1a1 + . . . rnan

And in this case, we say that A is a basis or a set of generators for F . If R is a commutative ring,
the size of A is called the rank of F .

An important distinction here is that ri as well as ai are unique, whereas in a direct sum only ai
are unique.
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0.0.1 Theorem

For any set A there is a free R-module F (A) on the set A. If M is any R-module and
φ : A → M a set map, then there is a unique module homomorphism Φ so that the
following diagram commutes (where j denotes the inclusion of A into F (A)).

When A is a finite set, we simply define F (A) = Ra1 ⊕ · · · ⊕Ran ∼= Rn (if R has identity).

The proof is as follows. First, let F (A) = {0} if A = ∅. Otherwise, let F (A) be the set of all (set)
functions f : A → R so that f(a) = 0 for all but finitely many a.

Indeed, we can seeA as being included in F (A) by constructing the function fa such that fa(a) =
1 and fa(b) = 0 for all b ̸= a. In this way, we can think of F (A) as all (finite) linear combinations of
elements of the form fa which can be identified with the elements of A. And indeed F (A) has a
unique expression as such a formal sum. This is a module in the obvious way.

Now, suppose that φ(A) is a map from the set A into an R-module M . Then we can define a
map Φ : F (A) → M by:

φ :
n∑

i=1

riai 7→
n∑

i=1

riφ(ai)

Since elements of F (A) have unique representations in this form, this map is well-defined. And
by definition, restricting Φ to A yields exactly φ as a module homomorphism. And Φ is unique
because it must respect the module homomorphism axioms.

When A is the finite set {a1, . . . , an}, then we have that F (A) = Ra1 ⊕×⊕Ran. And indeed we
can say that R ∼= Rai under the map r 7→ rai. Therefore, the free R-module of a set of size n is
simply Rn (in a sense, the ``simplest'' module).

Corollary

• If F1, F2 are free modules over A there is a unique isomorphism between them
which is the identity on A.

• If F is any free R-module with basis A, then F ∼= F (A).

This is essentially the statement that universal objects are unique.
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