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Definition: Let R be aring. A module M over aring R is an abelian group (with operation +) and
amap R x M — M which satisfies distributivity and associativity. If R has a 1, then we require
that 1m = m for each m € M.

These axioms should look fairly familiar. if R is a field, then a module is exactly a vector space
over R. A module is nothing more than a generalization of vector spaces.

Definition: A submodule is a closed subgroup N of an R-module M which is closed under the
action of R.

Example A significant example is modules over Z. The action of an integer on m € M is defined
straightforwardly as:

nm=m-+m-+---+m

Where we are adding m to itself n times. This is the only possible action of Z over M, because
of associativity and distributivity. What we have from this is that:

Z-modules are exactly abelian groups.

In particular, Z-submodules are exactly submodules of subgroups.

Example By associativity, we can define a module over F[z], where F'is a field. We simply need
to define how 1,z act on elements in the module. Let V be a vector space over F' -- we will make
V an F[z] module, by identifying the action of z with a linear transformation T : V. — V.

Conversely, if we have any module V over F[z], then in particular V' is a module over F'. But we

know that:

z(v+w) = zv + zw

z(av) = az(v)

So this means that indeed z is a linear transformation. So there is a natural isomorphism between
vector spaces V over F equipped with a linear transformation T and modules V over F|[z].

Consequently, the F[z]-submodules of V' are exactly vector subspaces of V' which are invariant
under T.

Proposition

A nonempty N of an R-module M is a submodule iff z + ry € N for each z,y € N,
r € R.

Let r = —1 and we get the subgroup criterion. Let z = 0 and we get closure under elements of
R. The converse case is fairly straightforward.



0.1 Quotient Modules and Module Homomorphisms

Definition: Let R be a ring and M, N are R-modules. Then an R-module homomorphism ¢ is a
map from M to N so that:

ez +y) =o@)+¢y)
p(rz) = rp(x)

As expected, an isomorphism is surjective as well as injective. The kernel and images are re-
spectively submodules of M, N as expected. Finally, we define Hompr (M, N) to be the set of all
R-module homomorphisms from M to N.

For example, Z-module homomorphisms are simply abelian group homomorphisms (since the
second criterion is implied by the first above). Over a field, the F-module homomorphisms
are simply linear transformations between vector spaces. Note, however, that R-module homo-
morphisms where R is a ring do not necessarily have any connection to ring homomorphisms
-- specifically because there is no requirement that a module homomorphism send identity to
identity.

Proposition
Hompg(M,N) is an R-module.

We can define addition and multiplication in the usual way:

Furthermore, if M = N then we can have a well-defined ring structure; multiplication is just
composition. Indeed, Hompg (M, M) is a ring with identity -- and indeed it has a special name.

Definition: The ring Hom (M, M) is called the endomorphism ring of M and is denoted End(M)
or Endr(M).

Proposition

Let R be a ring and let M, N be R-modules with N a submodule of M. Then M /N
(an abelian quotient group) can be made into a module over R by defining:

r(e+N)=rz+ N

And we have a natural projection map 7 : M — M /N with kernel N.

Finally, we define the sum of two modules:

A+B={a+b: acAbec B}

So that we can once more define the isomorphism theorems.



Theorem (Isomorphism Theorems)

e Let M, N be R-modules and let ¢ : M — N be a module homomorphism. Then
M/(kerg) = o(M).

¢ Let A, B be submodules of R-module M. Then we have: (A+B)/B = A/(ANB).

® Let M be an R-module and let A, B be submodules of M with A € B. Then
(M/A)/(BJA) = M/B.

® Let N be a submodule of the R-module M. Then there is a bijection between
submodules of M containing N and submodules of M /N given by A+ A/N.
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