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The general idea is to begin by defining the notion of convergence for arbitrary spaces.

Definition: A metric space is a set X equipped with a function d : X ×X → [0,∞] such that: -
d(x, y) = 0 iff x = y (Positive definiteness) - d(x, y) = d(y, x) (Symmetry) - d(x, z) ≤ d(x, y)+d(y, z).
(Triangle Inequality)

We now define convergence:

Definition: A sequence xn converges to x with respect to a metric d if lim
n→∞

d(xn, x) exists and is
equal to 0.

It is not hard to check that a sequence converges in the Euclidean, taxi-cab, or sup norm metric
iff each of its components converges.

Lemma

Limits are unique in a metric space.

Since a sequence gets arbitrarily close to its limit, we can prove that if there are two limits, they
are also arbitrarily close -- and indeed so they must be equal.

0.1 Point-Set Topology

Definition: A neighborhood of x0 in X is a set B(x0, r) =
y ∈ X | d(x0, y) < r, for some r > 0. This is sometimes called an open ball.

For later on, we define the useful notion of a limit point.

Definition: A limit point x of E is a point such that every neighborhood of x intersects E in some
point other than x itself.

Definition: x0 ∈ int(E), the interior of E, if some neighborhood of x0 is contained in E.

Definition: x0 ∈ ext(E) if there is some neighborhood of x0 which does not intersect E.

Definition: A boundary point of E is neither in its interior or exterior. The set of all boundary
points of E is denoted ∂E.

It is clear that around a boundary point, every neighborhood intersects both E and the comple-
ment of E, which is what we would expect.

Definition: The closure Ē of E is the set of points x ∈ X so that every neighborhood of x
has nonempty intersection with E; indeed this definition immediately suggests the following
proposition.

Proposition

The following are equivalent for x0 ∈ X in a metric space X. - x0 ∈ Ē - x0 ∈ int(E) ∪
∂E - There exists a sequence
xn ∈ X which converges to x0.
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Now, we can define the fundamental concepts of topology: open and closed sets.

Definition: E is closed if it contains its boundary.

Definition: E is open if it does not intersect its boundary. Equivalently, if E = int(E).

Proposition

• E is closed iff it contains all its limit points.

• A singleton set is automatically closed.

• Finite unions and infinite (or finite) intersections of closed sets are closed.

• Finite intersections and infinite (or finite) unions of open sets are open.

• intE is the largest open set which is contained in E.

• Ē is the smallest closed set which contains E.

All these facts are proven in any topology book, or in my topology notes1.

0.2 Relative Topology

Note that open sets are determined by both the metric itself and by the choice of ambient
space. For example, an open interval of the x-axis is open when considered as a part of R, but
considered in the plane it is not open.

Definition: Given a metric space X and Y ⊆ X, we call E relatively open with respect to Y if it
is open with respect to the metric space induced on Y by the metric of X.

Proposition

• E is relatively open with respect to Y iff E = V ∩ Y for some open set V ⊂ X.

• E is relatively closed with respect to Y iff E = K∩Y for some closed setK ⊂ X.

This is exactly what we do when constructing the subspace topology, as discussed in the afore-
mentioned notes.

0.3 Cauchy Sequences

Lemma

If a sequence converges, every subsequence converges as well.

If we pick a large enoughN , then for n ≥ N , every element of any subsequence will get arbitrarily
close to a limit.

1https://jhavaldar.github.io/notes/2017/08/04/top1.html
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Proposition

Suppose we have a sequence
xn following are equivalent: - For every ϵ > 0, N ∈ Z, there exists an n ≥ N so that
d(xn, L) < ϵ. - There exists a subsequence of
xn which converges to L.

The backwards direction is obvious. For the forward direction, we start by constructing a conver-
gent subsequence. For each N > 0, and each natural number k, there exists an integer M > k
so that:

d(aM , L) <
1

N

So M(k,N) exists for each choice of k,N . We define the sequence:

m0 = 0m1 = M(m0, 1)m2 = M(m1, 2) . . .

This is a subsequence of
xn by definition. And for each ϵ < 1

N , we have constructed xmN which lies within distance ϵ of L.
Thus, we have found a subsequence which converges to L.

We now move on to an important class of sequences.

Definition:
xn is called a Cauchy sequence if for each ϵ > 0, there exists an integer N so that if j, k ≥ N ,
then d(xj , xk) < ϵ.

Lemma

A convergent sequence is Cauchy.

For each epsilon, we pick Nϵ so that for all n ≥ Nϵ, d(xn, L) < ϵ. But then by the triangle
inequality, for j, k ≥ Nϵ/2, we have:

d(xj , xk) ≤ d(xj , L) + d(xk, L) ≤ ϵ

Proposition

Every subsequence of a Cauchy sequence is Cauchy.

This proof is very similar to the proof that every subsequence of a convergent sequence con-
verges.

We remark here that not every Cauchy sequence converges, so the converse of the above lemma
is not in general true. For example, take the successive truncated decimal approximations of pi;
this sequence is Cauchy, but it does not converge in Q. We naturally ask, in what kind of a space
is a Cauchy sequence always convergent?
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Lemma

Let
xn be a Cauchy sequence in a metric spaceX. Suppose some subequence converges
to L ∈ X. Then
xn converges to L.

We noted that if a sequence converges, every subsequence converges. Here, we have some-
thing like a converse. If a Cauchy sequence has a convergent subsequence, then the sequence
converges as well.

We now explores the conditions under which Cauchy sequences and convergent sequences are
equivalent.

Definition: A metric space X is complete if every Cauchy sequence converges in X

Propoosition

Let X be a metric space, and let Y be a subspace with the induced metric. Then, if
Y is complete, then Y is closed in X. Conversely, if X is complete, and Y is closed,
then Y is complete.

Closed subsets of complete spaces are complete; complete subsets of arbitrary spaces are
closed. In a sense, then, complete metric spaces are intrinsically closed, regardless of the ambi-
ent context; and if we take closed subsets of complete spaces, this property is preserved.

To prove the first proposition, suppose Y is complete. Take any convergent sequence inX. Since
convergent sequences are Cauchy, its limit must be in Y . Therefore, Y contains all its limit points
and it is closed.

To prove the second proposition, suppose that Y is closed, and X is complete. Take a Cauchy
sequence in Y . Since X is complete, the sequence converges in X. Therefore, the limit of this
Cauchy sequence lies in Ȳ ; and since Y is closed, indeed the limit lies in Y . Therefore, the Cauchy
sequence in Y converges in Y .

Note that proving both statements tells us that in a complete metric space, closed sets are
complete and vice versa. In general, however, completeness is strictly stronger than the closed
condition.

0.4 Compact Metric Spaces

Definition: A metric space is compact iff every sequence has a convergent subsequence.

Compactness, unlike some of the other properties mentioned, does not depend on the ambi-
ent context. We'll see why in a bit. First,, we explain some of the conditions associated with
compactness.

Definition: Let Y ⊂ X. Y is bounded if there exists an open ball around some point x ∈ X
which entirely contains Y .

Proposition

If X is compact, then it is complete and bounded.
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Let
xn be a Cauchy sequence in a compact space. Then, there exists a convergent subsequence. By
an earlier lemma, this means that
xn converges as well. Therefore, X is complete.

To prove the boundedness condition, we use the triangle equality. Pick an arbitrary x ∈ X. If X
is not bounded, then we can construct a sequence
xn so that d(xn, x) > n. Fix another integer N . Then, for m > N , we have:

d(x, xm) ≤ d(x, xN ) + d(xm, xN )d(x, xm)− d(x, xN ) ≤ d(xm, xN )

Since we fixed N , we can pick m large enough that the quantity on the left hand side blows up.
It is not hard to see that this sequence has no convergent subsequence, since no subsequence
is Cauchy; we fail to meet the condition that d(xm, xN ) goes to 0.

Corollary

If X is a metric space, and Y is compact in X, then Y is closed and bounded.

Completeness implies closedness, and so we are done.

Theorem

In Euclidean space, a set E is compact iff it is closed and bounded.

So the converse of the above theorem holds true not in general, but in Euclidean spaces. This is
the famous Heine-Borel theorem from real analysis. The proof of the converse goes something
like this: in a closed and bounded space, every sequence has a monotone subsequence, and
such subsequences must converge.

We now have an alternative definition of compactness, which may be considered the ``true''
definition since it differs in some kinds of topological spaces from the one we constructed earlier.
You shouldn't feel bad if this definition is puzzling; it took a lot of work to find the right condition
to discuss these notions.

Theorem

Let Y ⊆ X be a compact subspace of a metric space. Let Vα, α ∈ A be an open cover
for Y , i.e. a collection of (possibly finite) open sets whose union contains Y . Then
tehre is a finite subset F ⊆ A so that:

Y ⊆
∪
α∈F

Vα

More succinctly: every open cover of Y has a finite subcover.
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Proof We assume that there exists no finite subcover. Then, we pick y ∈ Y arbitrarily. We know
that some neighborhood of y is contained in Vα for some α. We define:

r(y) = sup{r | B(y, r) ⊂ Vα for some α}

So r(y) is the size of the largest ball around y which is contained in a single element of the open
cover. We define:

r0 = inf{r(y) | y ∈ Y }

So r0 is the smallest radius for which a ball of size r0 around every y ∈ Y is contained in a single
element of the open cover.

There are two cases here: r0 = 0, or r0 > 0.

Case 1:

Let r0 = 0. For each positive integer n, we can pick (by the axiom of choice) some element yn
so that r(yn) < 1

n . The limit of the sequence
r(yn) must be zero.

Since Y is compact, we have a convergent subsequence ynk
, which converges to some L ∈ Y . If

we pick small ϵ > 0 we can have B(L, ϵ) ⊂ Vα (since Vα is open).

Furthermore, there is some integer N so that for all nk > N , ynk
∈ B(L, ϵ

2 ).

Putting these facts together, we pick an arbitrary y ∈ B(ynk
, ϵ
2 ); by the triangle inequality, we

have for nk ≥ N :

d(y, L) ≤ d(y, ynk
) + d(ynk

, L)d(y, L) ≤ ϵ

So indeed this means that B(ynk
, ϵ
2 ) ⊆ B(L, ϵ) ⊆ Vα. But this means that r(ynk

) ≥ ϵ
2 for each

nk ≥ N . This contradicts our earlier assumption that the limit of the sequence
r(yn) must be zero.

Case 2:

In this case r0 > 0. So in particular, r(y) > r0/2 for each y ∈ Y . Equivalently, for each y ∈ Y ,
there is some α so that B(y, r0/2) ⊆ Vα.

We pick y1 ∈ Y and construct an open ball around y1 of radius r0/2. This ball cannot cover Y ,
since that would mean we have a finite subcover Vα.

Since the above set does not contain Y , we can pick y2 from outside the set (i.e. farther than
distance r0/2 away from y1) and add to our construction an open ball around y2 of radius r0/2.
Our construction still cannot cover Y , since that would mean we have a finite subcover.

We continue so on to get a sequence yn so that d(yk, yj) ≥ r0/2 for k > j. This sequence is by
construction not Cauchy, and no subsequence is Cauchy. So there is no convergent subsequence;
indeed, this means that Y is not compact.

7



Corollary

Let X be a metric space. Take K1,K2, . . . to be nonempty compact nesting sets, so
that: K1 ⊃ K2 ⊃ K3 ⊃ . . .. Then,

∞∩
n=1

is non-empty.

Let Vn = K1 −Kn and assume that
∞∩

n=1
is empty. Then, that means that for each x ∈ K1, there

exists some j so that x /∈ Kj =⇒ x ∈ Vj . Therefore, Vn form an open cover for K1.

Since K1 is compact, Vn have a finite subcover. Of the finite subcover, we pick the one with
the smallest index Vm (which necessarily contains the union of all the elements of the subcover).
Then, K1 = Vm = K1 −Km. But this means that Km = ∅, which is a contradiction.

Finally, we conclude with some other nice properties of compact spaces.

Theorem

Let X be a metric space. Then the following are true: - If Y is compact in X, and
Z ⊂ Y , then Z is compact in Y iff Z is closed. - If Y1, . . . Yn are a finite collection of
compact sets, then their union is compact. - Every finite subset of X is compact.

The first theorem tells us that in compact spaces, compactness is equivalent to being closed,
whereas previously we only proved that compactness implies completeness (which is a strictly
stronger condition than being closed). We can think of this as analogous to the previous theorem
that in complete spaces, complete sets are compact and vice versa.
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