Topology, Part 2: Continuous Functions *Jay Havaldar*

Now that we have defined the basic structure of a topological space, we are ready to consider functions between spaces. We begin with an important condition: continuity.

Definition: A function $f : X \to Y$ between two topological spaces is continuous if, for each $\mathsf{open}\ \mathsf{set}\ V\subset Y$, $f^{-1}(V)$ is open in $X.$

Because of what we know about bases, it is sufficient to check that the inverse image of every basis element in *Y* is open.

Theorem

The following are equivalent. - *f* is continuous. - For any subset $A \subset X$, $f(\overline{A}) \subset \overline{f(A)}$. - For a closed set *B ⊂ X*, *f −*1 (*B*) is closed in *X*. - Take *x ∈ X*. Then for every neighborhood *V* of $f(x)$, there is a neighborhood *U* of *x* so that $f(U) \subset V$.

We won't prove all the parts of this theorem, as it basically reduces to set theory. Note however, that continuous functions preserve the topology of a space (both open and closed sets). Furthermore, the last bullet point here corresponds to our usual definition of continuity on the real line, if we define the standard topology on \mathbb{R} :

• *f* is continuous if for each point x_0 and each $\epsilon > 0$, there exists a $\delta > 0$ so that if *x* lies within a distance of δ from x_0 , then $f(x)$ lies within a distance of ϵ fom $f(x_0)$.

Definition: Let $f : X \to Y$ be a bijection. Then, if f, f^{-1} are both continuous, f is called a **homeomorphism**.

Homeomorphisms, as we will see, are the most important types of maps in topology. A **topological property** is defined as one which is preserved by homeomorphisms. Homeomorphisms play the same role in topology as isomorphisms do in algebra.

Definition: Let $f: X \to Y$ be continuous and injective, and the restriction of the range to $f(X)$ is bijective. If f^{-1} is a homeomorphism, then the map is called an **imbedding** of *X* in *Y* .

The following theorem gives us sufficient conditions for continuity.

Theorem

- A constant map is continuous.
- If *A* is a subspace of *X*, then the inclusion map from *A* to *X* is continous.
- The composition of two continuous functions is continuous.
- If $f : X \to Y$ is continuous, then the restriction of f to a subspace A of X is continuous.
- Similarly, restricting the range of a continuous function to a subspace is continuous.
- $f: X \to Y$ is continuous if X is the union of open sets U_{α} so that the restriction of *f* to each *U^α* is continuous.

The last point tells us that, in particular, we can check continuity on basis elements.

Theorem (Pasting Lemma)

Let $X \to A \cup B$, where A, B are closed in X . Then, suppose that $f : A \to Y$ and that *g* : *B → Y* are continuous, and that they agree on the intersection *A ∩ B*. Then *f* and *g* combine to create a continuous function $h: X \to Y$, with:

$$
h(x)\begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}
$$

The proof is fairly simple. Take a closed subset of *Y*. Then $C = f^{-1}(C) \cup g^{-1}(C)$. Since *f* is continuous, we know that $f^{-1}(C)$ is closed in A . Since A is closed in X , we finally have that *f* $^{-1}(C)$ is closed in $X.$ A similar argument goes for g ; so the intersection of the two sets is indeed closed.

We could construct manifolds by using the theorem above, but instead creating *X* as a union of closed sets and repeating the argument verbatim.

Theorem

Let $f : A \to X \times Y$. Then $f = (f_1(a), f_2(a))$ is continuous if and only if its coordinate functions f_1, f_2 are continuous.