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We now generalize to first-order systems of linear equations, in other words systems of the form:

x′
1 = a11x1 + ...+ a1nxn + b1

x′
2 = a21x1 + ...+ a2nxn + b2

...
x′
n = an1x1 + ...+ annxn + bn

Where aij(t) and bi(t) are functions. Of course, we can write this in matrix form as:

x1

...
xn


′

=

a11 ... a1n
... . . . ...

an1 ... ann


x1

...
xn

+

b1...
bn


Or more succinctly, writing x as the vector with xi as its entries, we can write:

x' = Ax+ b

By analogy, we say that the equation is homogeneous if b = 0. A solution is written as a vector
with the ith entry representing a solution for the ith equation.

As an analogy with the dimension 1 case, we have the superposition principle, which states
that for solutions x1, x2 to a homogeneous linear system, c1x1 + c2x2 yields a solution for any
constants c1, c2.

From here on out, we will focus on homogeneous systems, and later on discuss non-
homogeneous systems using the methods outlined earlier.

As before, we start with the guarantee of existence and uniqueness of solutions.

0.1 Existence and Uniqueness

Suppose we have a linear system defined on an interval:

x' = Ax+ b

With initial conditions given by the vector equation x(t0) = x0. Then, if the entries of A and the
entries of b all continuous functions in the interval, there is a unique solution vector x(t) which
exists throughout the interval.

0.2 Linear Independence

Perhaps more concretely, we can see that a homogeneous system of equations should have n
linearly independent solutions (and in fact, this implies our earlier result that an order n linear
equation ought to have n linearly independent solutions).

2



This makes sense because, if we evaluate both sides of the matrix equation at a particular point,
we have nothing more than an n× n matrix system of equations.

Definition: Let x1, ..., xn be a set of solutions to a homogeneous linear system. Then the matrix
X(t) with these vectors as its columns is called the fundamental matrix:

X =
[
x1 x2 . . . xn

]
The determinant of X is called the Wronskian of x1, . . . , xn.

We now have essentially the same criteria for independence: a set of solutions is linearly inde-
pendent at a point if and only if their Wronskian is nonzero there.

If the Wronskian is nonzero, we call x1, . . . , xn a set of fundamental solutions, as before.

Furthermore, we want to say something like the earlier theorem which guarantees that every
solution can be written as a combination of enough linearly independent solutions.

Theorem

If the vector functions x1, . . . , xn are linearly independent solutions of an order n linear
system in an interval, then each solution for the system can be written uniquely as a
combination (there is only one choice for each ci):

x = c1x1 + . . . cnxn

We accordingly will call the form c1x1+ . . . cnxn the general solution, and given a vector of initial
conditions x(0) = x0, we can indeed set t = 0 and solve for the coefficients in the general linear
algebra way.

Theorem

Given a set of solutions to an order n linear system x1, . . . , xn, then in an interval
α < t < β, the Wronskian is either zero everywhere or never vanishes.

This theorem makes our lives a lot easier. We know how to check linear independence at a point
by taking the Wronskian at that point. Now we can further say that all we have to do is check a
single point, and we have linear independence in an entire interval.

The proof, while interesting, will be ommitted since it doesn't add much to our dsicussion of
differential equations.

The last thing we should do is, as promised, guarantee that a set of n fundamental solutions
exists, i.e. that there are n linearly independent solutions to our equation.

Theorem

In particular, suppose we have a linear system x′ = Ax and solve this system with
the initial condition that X(t0) = I (i.e, xi(t0) is the ith column of the identity matrix).
Then, x1, . . . , xn form a fundamental set of solutions.
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To prove this theorem, first we know that for each row Ij of the identity matrix, we have the
existence and uniqueness of a solution to the equation x′

j = Axj with x(t0) = Ij . And it isn't
hard to see that if we pick t = t0, our fundamental matrix is defined to be the identity matrix,
which has nonzero determinant. From our earlier theorem, this tells us that x1, . . . , xn are linearly
independent throughout the interval, and thus form a fundamental set of solutions.

Our last theorem guarantees a nice result for complex solutions.

Theorem

Consider a linear system x′ = Ax, where each entry ofA is continuous and real-valued
in an interval. Then, if we have a complex solution x = u(t) + iv(t), both its real parts
and its complex parts are solutions to the original equation.

This theorem becomes clear by taking the derivative of x, and then noticing both sides of the
equation have to agree in both the real and imaginary parts.

Summary The general theory for linear systems tells us:

• If A, b are continuous and initial conditions are given, then a solution x′ = Ax+ b exists and
is unique in an interval.

• For a linear system, there exists at least one set of n fundamental solutions x1, . . . , xn, for
which the Wronskian is nonzero at a point. If the Wronskian is nonzero at a point, it is
nonzero throughout an interval.

• Every solution can be written as a linear combination of fundamental solutions, with the
coefficients determined by the initial conditions.

0.3 Connection to Higher Order Linear Equations

We can transform a higher order linear equation into a matrix system as above, and thus every-
thing we proved in the last system about the theory of higher order linear equations is just a
special case. As an example, look at the second order homogeneous equation:

y′′ + a1y
′ + a0y = 0

We can pick a vector y =

[
y
y′

]
. Solving for y′′, we obtain y′′ = −(by+ ay′), so we get a system of

equations:

[
y
y′

]′
=

[
0 1

−a0 −a1

] [
y
y′

]
Note that the determinant of the coefficient matrix is simply a0. We could do the same thing for
a third order equation to obtain:

 y
y′

y′′

′

=

 0 1 0
0 0 1

−a0 −a1 −a2

 y
y′

y′′


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And here the determinant is −a0.

It is not hard to see that in general, we can turn an order n linear differential equation into an
order n linear system. The determinant of the coefficient matrix will always be ±a0, In particular,
if a0 = 0 at a point, we are indeed left with an order n− 1 equation, since y does not appear in
the equation at all.

We now move on to solving systems of equations with constant coefficients.

0.4 Homogeneous Linear Systems With Constant Coefficients

As before, we start with the simplest case, in which all the coefficients are constant and the right
hand side is zero. We come up with a trial solution.

Suppose that v is an eigenvector of the matrix A with eigenvalue λ. Then any multiple of v is
also an eigenvector of x with eigenvalue λ.

In particular, the equation v′ = Av becomes v′ = λv for any eigenvector. So we pick x = eλtv,
thus solving our equation since x′ = λeλtv = λx.

This means that if A has n real, distinct eigenvalues, then we're done, since eigenvectors for
distinct eigenvalues are linearly independent -- so we have found a fundamental set of solutions.
But as you might expect, there are other cases than that.

0.4.1 Complex Eigenvalues

First, we know that complex eigenvalues occur in conjugate pairs. We can tell this because when
finding eigenvalues, we solve a polynomial with real coefficients, and such polynomials have
conjugate pair roots. It is not hard to see that eigenvectors, as well, occur in conjugate pairs.

Suppose we have such a complex pair of eigenvalues, λ ± iµ. Then using the same methods
outlined above, we have a solution:

x = (a+ bi)e(λ+iµ)t

Where a, b are vectors which are the real and imaginary parts of an eigenvector. But we can use
Euler's identity eit = cos t+ i sin t, and rearrange to get:

x = eλt(a cosµt− b sinµt) + ieλt(a sinµt+ b cosµt)

We know from an earlier theorem that both the real and the imaginary parts of this expression
are solutions to the differential equation. So instead of writing two complex solutions, we can
write two real solutions instead:

x1 = eλt(a cosµt− b sinµt)
x2 = eλt(a sinµt+ b cosµt)
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0.4.2 Repeated Eigenvalues

Say we have an eigenvalue λ which is repeated in the characteristic equation. If there are n
linearly independent eigenvectors associated with λ, we are done; the problem is when there are
not. Earlier in the 1 dimensional case, when we had an issue of repeated roots in a characteristic
equation, we picked teλt as a trial solution. We did this by performing reduction of order to get
a linearly independent solution of the form c1e

rt + c2te
rt, and setting c1 = 0. We will apply a

similar trick here.

Suppose x0 = eλtv is a solution to the equation x′ = Ax, where v is an eigenvector for eigenvalue
λ. Then we try to construct another solution of the form:

x1 = teλtv + eλtw

Setting x′
1 = Ax, and noting A

(
eλtv

)
= λ

(
eλtv

)
we have:

x′
1 = eλtv + λteλtv + λeλtw

Ax1 = λteλtv +Aeλtw

Cancelling the equal terms and setting the two equal, we get:

v = (A− λI)w

Because we know that (A− λI)v = 0, we can equivalently write:

(A− λI)
2
w = 0

This is the essential idea behind constructing solutions to matrix systems of differential equations
with repeated eigenvalues. Our solution looks like:

x1 = teλtv + eλtw

Where (A− λI)w = v.

Definition: A vector w is called a generalized eigenvector of rank m of A if we have:

(A− λI)
m
w = 0

(A− λI)
m−1

w ̸= 0

Note that if w is a generalized eigenvector of rankm, then (A−λI)w is a generalized eigenvector
of rank m − 1, and so on. By repeating this process, we can get a chain of m − 1 generalized
eigenvectors called a Jordan chain. Jordan chains are linearly independent. Note that the last
vector in this chain is a generalized eigenvector of rank 1, which is just an eigenvector.
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Theorem

Every n× n matrix has a set of linearly independent generalized eigenvectors.

This theorem allows us to construct n linearly independent solutions. In fact, if you're familiar
with linear algebra, this is equivalent to stating the existence of the Jordan canonical form.

Method For Solving We aim to solve x′ = Ax, in general. For each eigenvalue λ, we look at
the equation (A− λI)v = 0.

• Compute the solutions to (A− λI)mv = 0 for each m until (A− λI)m = 0.

• Pick a vector vm such that (A−λI)mv = 0 but (A−λI)m−1v ̸= 0. This is called a generalized
eigenvector of rank m.

• Compute the associated Jordan chain, with vm as chosen above, vm−1 = (A − λI)vm,
vm−2 = (A− λI)2vm etc.

• Use the Jordan chain above to construct the following linearly independent solutions to
the differential equation:

x1 = eλtv1

x2 = teλtv1 + eλtv2

x3 =
t2

2!
eλtv1 + teλtv2 + eλtv3

...

xm = eλt

(
m∑
i=1

tk−1

(k − 1)!
vi

)

• If we need more solutions, pick a linearly independent generalized eigenvector of rank k
and repeat this process.

With some knowledge of linear algebra, you can say that in a sense, the Jordan chains are
uniquely determined. That is to say, we can say the λ has a certain number of Jordan chains
with certain sizes, and these sizes are fixed. However, that's outside of the scope of these notes
for now.

0.5 Non-Homogeneous Linear Systems

We now move to a discussion of linear systems of the form:

x′ = Ax+ b

Where once again, the entries of A, b are continous to guarantee a solution. By the same exact
argument we made before, we can write the solution to any such equation in the form:

x = c1x1 + · · ·+ cnxn + v
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Where xi form a set of fundamental solutions to the associated homogeneous equation (some-
thing like a complementary solution), and v is a solution to the non-homogeneous equation (a
particular solution). Furthermore, we can use matrix multiplication to rewrite:

x = Xc+ v

Where c =

 c1. . .
cn

T

is a vector of coefficients. We start with a simple case

0.5.1 Diagonalization

Let's say A is a diagonalizable matrix. From linear algebra, this means A can be written as
A = SDS−1, where D is a diagonal matrix. If this is the case, then we can perform a change of
variables by picking x = Sy or equivalently, y = S−1x. Then we have:

x′ = Ax+ b

Sy′ = SDS−1Sy + b

Sy′ = SDy + b

y′ = Dy + b

Since D is a diagonal matrix, this reduces to a set of first order equations:

y′1 = λ1y1 + b1

y′2 = λ1y2 + b2

...
y′n = λnyn + bn

We have effectively uncoupled the equations; instead of solving them simultaneously, we can
now solve them separately, and to get x we apply the transformation x = Sy. If b = 0, we have
the manifest solution yi = cie

λt. If b ̸= 0, we still have a set of first order linear equations, which
we know we can solve from the first chapter. In the next chapter we'll see another way of solving
this type of differential equation.

0.5.2 Variation of Parameters

Recall that given a set of solutions to the associated homogeneous equation, we used the vari-
ation of parameters method to find a solution for the non-homogeneous equation by writing
y = u1y1 + · · ·+ unyn for some functions ui. We can do the same thing for matrix systems.

Assume we have already found a fundamental matrix X for the associated equation x′ = Ax.
Then we search for a solution for the non-homogeneous equation of the form x = Xu, where u
is any vector of functions. Differentiating, we get:

x′ = Ax+ b

X ′u+Xu′ = AXu+ b
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You can verify for yourself that the product rule does work for matrices. SinceX is a fundamental
matrix, we have X ′ = AX, so we can write:

Xu′ = b

Since the fundamental matrix has a nonzero determinant, it has an inverse, and indeed we can
solve for u:

u =

∫
X−1bdt+ c

Where c is any constant vector. In the first part of this chapter, we discovered that higher order
linear systems are special cases ofmatrix systems. Using that same transformation, we get exactly
the setup for variation of parameters as before. The only difference is that now, the constraints
that felt like odd choices before now make more sense. As long as the Wronskian is nonzero,
the fundamental matrix is invertible and the method works.
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