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We move onto higher order linear differential equations. As before, we need some suitable
existence and uniqueness theorem which works for the general case.

0.1 Existence and Uniqueness

In general, a linear differential equation is of the form:

any
(n) + an−1y

(n−1) + ...+ a0y = g(t)

Where an are functions and y(n) represents the nth derivative of y.

Theorem

Suppose we have a linear differential equation with coefficients ai(t) and right hand
side equal to g(t) defined in an interval I. Then, given n initial conditions y(n)(t0) = cn,
there exists a unique solution to the differential equation in the interval.

Note that we already know how to solve this equation in many cases by borrowing techniques
from the first two chapters:

• If the coefficients are constant and the right hand side is zero, we use the same methods
as in Chapter 2.

• If the coefficients are constant and the right hand side is of a particular form, we can use
the method of undetermined coefficients.

• If we know one solution, we can reduce our order n equation into an order n− 1 equation
using the method of reduction of order.

Furthermore, we still know the form of a general solution of a non-homogeneous linear equation
as a sum of a complementary and a particular solution; and the Wronskian can still be used to
check for linear independence of solutions. The following theorem tells us that the solution space
for a homogeneous equation is exactly dimension n.

Theorem

Suppose we have an equation of the form:

any
(n) + an−1y

(n−1) + ...+ a0y = 0

Where ai are continuous on an interval. Then, if we find y1, y2, ...yn linearly inde-
pendent solutions to the equation, then every solution can be expressed as a linear
combination of y1, ..., yn.

We call such a solution set a fundamental set of solutions.
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0.2 Variation of Parameters

Finally, we arrive at the most important tool we have for solving a non-homogeneous nth order
linear differential equation.

Suppose we have an equation of the form:

y(n) + an−1y
(n−1) + ...+ a0y = f(t)

In other words, the first coefficient is 1.

Taking the associated homogeneous equation, let y1, ..., yn be its fundamental solutions. Then
we try to find a solution to the non-homogeneous equation of the form:

y = u1y1 + u2y2 + ...+ unyn

Where ui are functions.

To solve uniquely for each ui, we need n equations. To find them, we first take the derivative of
y:

y′ =
n∑

i=1

u′
iyi + uiy

′
i

To make things easier for us, we set the condition
n∑

i=1

u′
iyi = 0. Taking the second derivative, we

get:

y′ =
n−1∑
i=1

u′
iyi + uiy

′
i

And similarly, we set the condition
n∑

i=1

u′
iy

′
i = 0. Repeating this process until we hit the n − 1th

derivative, we get n − 1 conditions. The final condition comes from substituting in our trial
solution into the differential equation:

y(n) + an−1y
(n−1) + · · ·+ a0y = f(t)

Now substituting in y(n) =
n∑

i=1

uiy
(n)
i + u′

iy
(n−1)
i , we get:

n∑
i=1

uiy
(n)
i + u′

iy
(n−1)
i + an−1

∑
uiy

(n−1)
i + ...+ a0

∑
uiyi = f(t)

But note that for each yi, since it is a solution to the associated homogeneous equation, we have:

y
(n)
i + an−1y

(n−1)
i + ...+ a0yi = 0
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So most of these terms drop out! The only terms that remain give us:

n∑
i=1

u′
iy

(n−1)
i = f(t)

To summarize, our conditions look like:

u′
1y1 + ...+ u′

1yn = 0

u′
1y

′
1 + ...+ u′

1y
′
n = 0

...
u′
1y

(n−1)
1 + ...+ u′

1y
(n−1)
n = f(t)

And to put this in matrix form:

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


u1

...
un


′

=

 0
...

f(t)


So, as long as W ̸= 0, we can solve for u′

i and thus integrate to find ui.

Summary of Method Suppose we have an equation of the form:

y(n) + an−1y
(n−1) + ...+ a0y = f(t)

Where we have a set of fundamental solutions yi to the associated homogeneous equation. Then,
we can write a solution as:

y = u1y1 + ...+ unyn

Where ui are found by solving the equation:

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


u1

...
un


′

=

 0
...

f(t)


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