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We move onto second order linear differential equations. First, we need a theorem that tells us
what kinds of solutions exist for differential equations.

0.1 Existence and Uniqueness

We need a suitable theorem guaranteeing uniqueness. The theorem goes just as we expected:

Theorem Let p, q, r be continuous in an interval I. Then the differential equation:

y′′ + py′ + qy = r

With initial conditions y(t0) = y0 and y′(t0) = v0, has a unique solution in the interval.

We start with looking at the simplest type of second order linear differential equations. To make
things simple, we set the coefficients to be constants, and the right hand side to be zero.

0.2 Homogeneous Equations with Constant Coefficients

We have a differential equation of the form:

ay′′ + by′ + cy = 0

Such an equation where the right hand side is zero is called a homogeneous equation.

We could thenwe could use a trial solution y = ert, which yields the associated auxiliary equation
(or characteristic equation):

ar2 + br + c = 0

Since ert ̸= 0. Solving this yields two solutions.

As an alternative way of writing this, we can call the derivative D with Df = f ′, D2f = f ′′,
etcetera. Then the differential equation becomes:

(aD2 + bD + c)y = 0

And to get a nontrivial solution y ̸= 0, we solve the same auxiliary equation for D.

First note that for a homogeneous linear equation, linear combinations of solutions yield solu-
tions; this creates a vector space structure for the solutions.

This is called the superposition principle: for any two solutions to a homogeneous linear equa-
tion, any linear combination of the solutions is also a solution.

In general, for a linear constant coefficient differential equation of order n, the space of solutions
is dimension n. So we only need to construct n linearly independent solutions, which we do as
follows:
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• For a real root, we use ert.

• For a real root repeated with multiplicity m, we add ert, tert, ..., tm−1ert. You can check
that these are all solutions to the differential equation (D − r)my = 0 and are linearly
independent away from t = 0.

• For complex roots a± bi we can write eat cos bt, eat sin bt.

• For repeated complex roots a ± bi we can write eat cos bt, eat sin bt, teat cos bt, teat sin bt,
etcetera.

0.3 Linear Independence

As mentioned earlier, the solutions to a linear homogeneous differential equation of order n on
an interval I form a vector space of order n. So what we're looking for is a basis of solutions. The
above construction gives us n solutions, so we need to check that they are linearly independent;
if they are, we have indeed found a basis.

Definition: Let f1, f2, ...fn be a set of smooth functions on an interval I. We look at the following
equation:

c1f1 + c2f2 + ...+ cnfn = 0

Where ci are constants. Note that by 0 here we are denoting the zero function; in other words,
this equation should hold for all inputs x.

If we can find a solution where at least one ci is nonzero, we call the functions linearly dependent
on the interval; if instead the only solution has each ci = 0, the functions are called linearly
independent.

If we can find a solution ci, it is clear that the above equation still holds when we take the deriva-
tive of both sides (and thus the second derivative, third derivative, etc). Thus, if the set fi is
linearly independent, then we have a non-trivial solution to the following system of equations.

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n


c1...
cn

 =

0...
0


This system of equations has a nontrivial solution if and only if:

det

 f1 ... fn
... . . . ...

fn−1
1 ... fn−1

n

 = 0

Definition: For functions f1, ...fn, the above determinant is called the Wronskian of f1, ...fn,
denoted W (f1, ...fn). The above matrix is called a fundamental matrix.

Now, we can leverage our knowledge of linear algebra to state the following theorem.
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Theorem Let f1, ...fn are solutions to an order n linear homogeneous differential equation in
an interval. Then, f1, ...fn are linearly independent if and only if the Wronskian W (f1, ..., fn) is
nonzero somewhere in the interval.

0.4 Reduction of Order

So how exactly did we come to the above construction of solutions for repeated roots in a linear
constant coefficient homogeneous equation? The answer lies in the method known as reduction
of order.

Suppose we have a linear differential equation of the form:

y′′ + p(t)y′′ + q(t)y = r(t)

With p, q, r continuous and r possibly zero. And suppose that we know some solution y1 (with
continuous derivative) which is never zero in an interval. Then, we can try a solution of the form
y2 = vy1 for some twice differentiable function v. Substitution and some algebra yields:

v′′ +

(
2y′1
y1

+ p

)
v′ =

r

y1

Since this is a linear first order differential equation and y′1, p, r are assumed to be continuous
with y1 nonzero, we know there is a unique solution in our interval.

Note that though we are essentially dealing with a first order differential equation for v′, when
we integrate v′ we obtain an integration constant. We can WLOG write v = ṽ+ c, and thus write:

y2 = ṽy1 + cy1

As we expected, we end up with two integration constants: the first comes from solving the
above differential equation for v′; the second comes from integrating v. With two initial condi-
tions, then, we can solve for these two constants uniquely.

Thus, we can use reduction of order to solve a general (homogeneous or non-homogeneous)
2nd order linear differential equation where we know one solution.

Example Take a constant coefficient differential equation with repeated roots, such as (D −
r)2y = (D2 − 2Dr + r2)y = 0. We already have a solution of the form ert, so we set:

y = vert

We know that y1 = ert, y′1 = rert Our equation for v becomes:

v′′ +

(
2y′1
y1

+ 2p

)
v′ =

r

y1

v′′ = 0
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Thus, we have v = at+ b, for some real coefficients a, b. Our linearly independent solution to the
differential equation is then:

y = vy1 = atert + bert

And for simplicity sake, we can set a = 1, b = 0 and still have a linearly independent pair.

0.5 General Solutions to Non-Homogeneous Linear Differential Equations

Suppose we are working with a second order linear equation:

y′′ + p(t)y′′ + q(t)y = r(t)

And suppose we have two solutions to the above equation, y1 and y2. Then, we know the
following:

y′′1 + p(t)y′′1 + q(t)y1 = r(t)

y′′2 + p(t)y′′2 + q(t)y2 = r(t)

(y1 − y2)
′′ + p(t)(y2 − y1)

′ + q(t)(y2 − y1) = 0

So, y1−y2 is a solution to the associated homogeneous equation! This is useful for the following
theorem that allows us to solve non-homogeneous linear differential equations.

Theorem Suppose we have have a linear, non-homogeneous differential equation. Then the
general solution can be written:

y(t) = yc + yp

Where yc is a solution of the associated homogeneous equation, called the complementary
solution, and yp is one particular solution of the homogeneous equation, called the particular
solution.

From now on, we will call a linearly independent set of solutions y1, ..., yn to a homogeneous
equation, a set of fundamental solutions (which, accordingly, fill out the first row in a fundamen-
tal matrix). We can then rewrite the above solution:

y(t) =

n∑
i=1

ciyi + yp

Where the coefficients ci can be solved for if we are given n initial conditions.

This theorem gives us a method of solving a general non-homogeneous linear differential equa-
tion:
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• Solve the associated homogeneous equation to get a general solution c1y1 + ...+ cnyn.

• Find one solution of the non-homogeneous equation yp.

• Sum the two quantities above to obtain a general solution of the non-homogeneous equa-
tion.

• Use n initial conditions to solve for ci in the complementary solution.

The Method of Undetermined Coefficients We first covered the case where we are working
with a linear constant coefficient homogeneous differential equation. Using the previous section,
we know that a general solution to a non-homogeneous linear equation can be written as y =
yc + yp. Let's take a look at a special case where we can solve for such a solution easily.

Using the technique from earlier of writing first derivatives as D, second derivatives as D2,
etcetera, we can indeed write a linear differential operator, or a polynomial function of D.
For example:

y′′ + y = 0

(D2 + 1)y = 0

P (D)y = 0

Where P (D) = D2 + 1 is a polynomial in D.

Conditions Suppose we are working with a non-homogeneous differential equation of the form:

P (D)y = F (t)

And further suppose that F (t) is a solution of some linear homogeneous constant coefficient
equation A(D)y = 0. We call A(D) an annihiliator of F (t).

Because we know what these kinds of solutions look like, that means that F (t) could be: - F (t)
is of the form tkert for some real number r and non-negative integer k. - F (t) is of the form
c1t

keat cos(bt) + c2t
keat sin(bt), where a, b, c1, c2 are real and k is non-negative. - F (t) is a linear

combination of the above forms of solutions.

In this case, we can ``multiply'' both sides by A(D) to get a higher order homogeneous equation:

A(D)P (D)y = A(D)F (t) = 0

And we know exactly how to solve this kind of equation. Note that if y is a solution to P (D)y = 0,
then y is a solution to A(D)P (D)y = 0. This fact will become important in just a second.

Finding a Solution From our theorem, we know that the solutions to P (D)y = F (t) are of the
form y = yc + yp, where P (D)yc = 0. So the first thing we do to solve our equation is find the
complementary solutions yc using above methods.

Next, we solve A(D)P (D)y = 0 to obtain a set of solutions c1y + 1 + ... + ckyk. As we noted
before, every solution of our target non-homogeneous differential equation is also a solution
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to the equation A(D)P (D)y = 0, and is thus of the form c1y1 + ... + ckyk. Furthermore, from
computing the complementary solutions we know that yc = c1y1 + ... + cnyn for some n < k.
Thus, we know that yp = y − yc is of the form cn+1yn+1 + ...+ ckyk.

Finally, substituting into the equation P (D)yp = F (t), we can solve for these coefficients; hence
the name, the method of undetermined coefficients. Once we have yp, we can write our general
solution y = yc + yp.

To summarize the method: - Find an annihilator A(D) of F (t). - Find the complementary solution
yc by solving the equation P (D)yc = 0. - Solve the equation A(D)P (D)y = 0, obtaining a
solution of the form ỹ = yc + yp, where yp is written as a linear combination of other functions
with unknown coefficients. - Substitute yp into the equation P (D)yp = F (t) to solve for the
undetermined coefficients. - Write solutions to the differential equation as y = yp + yc. - Given
n initial conditions, solve for the coefficients in yc.

0.6 Summary

With these tools, we can do the following for linear differential equations: - Guarantee the ex-
istence and uniqueness of solutions to the equation on an interval. - Check if solutions to a
differential equation are linearly independent. - Given one solution to a second-order equation,
we can find another linearly independent solution using reduction of order, thus completely solv-
ing the equation. - Given a constant coefficient homogeneous equation, we can find all the
solutions. - Given a non-homogeneous constant coefficient equation of a particular form, we
can use the method of undetermined coefficients to find all the solutions.

In the next section, we tackle the problem of finding solutions to arbitrary non-homogeneous
equations of any order.
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