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We now generalize the concepts built up in the previous discussion of geometry on surface in R3.
The most important element of our earlier discussion was the Euclidean dot product. The simple
generalization, then, is to define a general inner product on a vector space (namely, the tangent
space). From the inner product alone we can construct a rich intrinsic geometry on surfaces
which may be quite different from the Euclidean case.

0.1 Geometric Surfaces

Definition: An inner product on a vector space V is a real-valued, bilinear, symmetric, and
positive definite (non-negative for all inputs) function ⟨v, w⟩ on pairs of vectors.

Now that we have something like a dot product, we can define the generalization of a surface.

Definition: A geometric surface is an abstract surface with an inner product on each tangent
space.

In particular this means that if V,W are differentiable vector fields on a surface M , then ⟨V,W ⟩
is a differentiable scalar function onM .

Definition: A metric tensor is a function on all pairs of vectors such that:

gp(v, w) = ⟨v, w⟩p

A metric tensor is thus similar to a 2-form, but instead of being skew-symmetric, it is symmetric.
In its arguments. Loosely, we have:

surface+metric tensor = geometric surface

Now, we define a frame field on a surfaceM , as before, as a pair of unit vector fields E1, E2 so
that:

⟨Ei, Ej⟩ = δij

And from this we have the dual 1-forms:

θi(Ej) = δij

Finally, we carry over the connection form ω12, which uniquely satisfied the structural equations:

dθ1 = ω12 ∧ θ2
dθ2 = ω21 ∧ θ1

In a neighborhood p of M , we get a differentiable angle function θ so that for any unit tangent
vector field Ē1:

Ē1 = cosφE1 + sinφE2
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So indeed we can pick:

Ē2 = − sinφE1 + cosφE2

And we get another (positively oriented) frame field. We can indeed pick−Ē2 to get a negatively
oriented frame.

Lemma Let E1, E2 and Ē1, Ē2 be frame fields on some region inM :

ω̄12 = ±(ω12 + dφ)

θ̄1 ∧ θ̄2 = ±(θ1 ∧ θ2)

Wherewe pick the sign depending onwhether the frames have the same or opposite orientations.
This proof follows by simple algebra to write θ1, θ2 in terms of the barred versions; then, take
exterior derivatives and apply the first structural equations. By the uniqueness of solutions to
the structural equations, we get our first result; by applying both wedge products to (E1, E2),
we get the second result.

Definition: A manifold with a metric tensor is called a Riemannian manifold.

So indeed, a geometric surface is simply a 2-dimensional Riemmanian manifold.

0.2 Gaussian Curvature

Though we initially defined the Gaussian curvature in terms of the shape operator, the Theorema
Egregium showed us we need not consider the ambient context; instead, we can calculate K
from purely properties of the surface which are intrinsic to the surface itself. So we claim:

Theorem On a geometric surfaceM , there is a unique real-valued function K so that for every
frame field onM , the second structural equation:

dω12 = −Kθ1 ∧ θ2

The proof follows from the basis formulas, which tell us that there is a unique K satisfying the
above (the second structural equation). But why does this hold for all frame fields? Say, that for
example:

dω̄12 = −K̄θ̄1 ∧ θ̄2

We wish to show that K = K̄ on the overlap of the domains of the two frame fields. By our
earlier theorem, we have:

ω̄12 = ω12 ± dφ

Where the sign is determiend depending on orientation. Taking the exterior derivative of both
sides and noting that d2 = 0, we indeed get that:
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dω̄12 = dω12

K̄θ̄1 ∧ θ̄2 = Kθ1 ∧ θ2

Since both of the wedge products are nonzero, indeed K̄ = K. So indeed, the first structural
equations uniquely determine the connection form ω12, and the second structural equations
uniquely determine K everywhere.

Example Let T be a torus of revolution with the usual parametrization:

x(u, v) = ([R+ r cosu] cos v, [R+ r cosu] sin v, r sinu)

We define the metric with:

⟨xu, xu⟩ = 1

⟨xu, xv⟩ = 0

⟨xv, xv⟩ = 1

This determines a unique inner product at each point and consequently at each tangent plane.
But this torus is flat! Recall:

⟨v, w⟩M = ⟨F⋆(v), F⋆(w)⟩N

For any isometry F between surfacesM,N . And indeed x is a regular mapping, so we can indeed
push forward an inner product on R2 to one onM :

⟨U1, U2⟩R2 = ⟨x⋆(U1), x⋆(U2)⟩M

And this is indeed the inner product we just defined, since x⋆(U1) = xu. What we have done is
pull back this torus under x to get the plane. By Gauss' Theorema Egregium, K is preserved, so
we have defined a flat torus. However, this torus is compact, and we know from earlier discussion
that in R3 that a compact surface has positive curvature. Therefore, the flat torus does not exist
in R3.

Corollary For the plane R2 with the metric tensor ⟨v, w⟩ = v·w
h2(p) for some function h(u, v) > 0,

the Gaussian curvature is:

K = h(huu + hvv)− (h2u + h2v)

The proof is simple. The identity map R2 →M is a patch with E = G = 1
h2 , F = 0. Recall earlier

that we proved we can computeK purely in terms ofE,F,G; using this formula the result follows
by algebra.
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Example For example, we can define the so-called hyperbolic plane with h(u, v) = 1 − u2+v2

4
defined in the disk u2 + v2 < 4. By our earlier lemma, K = h(huu + hvv)− (h2u + h2v) = −1.

Note that any regular mapping F :M → N pulls back a metric tensor on N to one onM , but in
general you can only push forward a metric via a diffeomorphism (which has a smooth inverse).
The essential problem is that if F (p1) = F (p2), then inner products might transfer differently at
those two points. We address this issue with the following proposition.

Proposition Suppose F is a regular mapping from a geometric surfaceM to a surface N . Sup-
pose when F (p1) = F (p2), that there is an isometry G12 from a neighborhood of p1 to a neigh-
borhood of p2 such that:

FG12 = F

G12(p1) = p2

Then, there exists a unique metric tensor on N which makes F a local isometry.

So indeed, this gives us a sufficient condition for the pushforward of a metric under a regular
mapping to be well-defined.

Proof Since F is a local isometry, the inner product is completely determined on N by the
isometry. F is regular, so for every p1 in M with F (p1) = q, there are unique vectors v1, w1 so
that:

F⋆(v1) = v

F⋆(w1) = w

And we write in this case that ⟨v, w⟩N = ⟨v1, w1⟩M . What if F (p2) = q and p1 ̸= p2? The same
argument holds, and we have a unique pair v2, w2 at p2 which are pushed forward by the tangent
map of the isometry to v, w. We want to show:

⟨v1, w1⟩M = ⟨v2, w2⟩M

Let G = G12 be an isometry. Then, FG = F , so by the chain rule, F⋆G⋆ = F⋆. Therefore, G⋆

carries v1, w1 to v2, w2, and since G is an isometry it indeed preserves the inner product.

0.3 The Covariant Derivative

We want to generalize the concept of the covariant derivative, so that: - ∇VW at p is the rate of
change ofW in the direction of V (p). - ω12(V ) = ⟨∇V E1, E2⟩.

Lemma Assume there is a covariant derivative ∇ defined on M with linearity and the Leibniz
property, satisfying the connection form equation as well. Then, ∇ satisfies the connection
equations:

∇VE1 = ω12(V )E2

∇VE2 = ω21(V )E1
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And for a vector fieldW = f1E1 + f2E2:

∇VW = (V [f1] + f2ω21(V ))E1 + (V [f2] + f1ω12(V ))E2

This is called the covariant derivative formula.

Proof Let ∇V = ⟨∇V E1, E1⟩E1 + ⟨∇V E1, E2⟩E2, by orthonormal expansion. Then, we have:

0 = V [⟨E1, E1⟩] = 2⟨∇V E1, E1⟩

So indeed, ∇V E1 = ω12(V )E2, since the covariant derivative has no component in the direction
of E1. The covariant derivative formula then follows by siply applying the chain rule to W =
f1E1 + f2E2.

Theorem This theorem is often called the fundamental theorem of Riemannian Geometry. On
each surfaceM , there exists a unique covariant derivative∇ satisfying: - The linearity and Leibniz
properties. - ω12(V ) = ⟨∇V E1, E2⟩. For every frame field E1, E2.

The surprising upshot of this theorem is that there is a single covariant derivative which satisfies
the connection form condition for all frame fields. The preceding lemma shows that for each
frame, there is at most one covariant derivative (the one specified by the covariant derivative
formula above). So we wish to prove that there is at least one covariant derivative.

Proof First, we consider the local definition. For a frame field E1, E2 on a region inM , we know
how to define the covariant derivative by the covariant derivative formula; we can check that
the product rule is satisfied and linearity holds usig that formula. Then, to prove the condition
regarding the connection forms, setW = E1.

Secondly, we deal with the issue of consistency. Do our local definitions agree for two different
frame fields? We only need to check that two frame fields defined on the same region yields
covariant derivatives which agree onW = E1,W = E2. AssumeWLOG that the two frames have
the same orientation. Then:

Ē1 = cosφE1 + sinφE2

∇V Ē1 = sinφ(−V [φ] + ω21(V ))E1 + cosφ(V [φ] + ω12(V ))E2

But we have ω̄12 = ω12 + dφ, and so we our above equation reduces to:

∇V Ē1 = ω̄12(V )(− sinφE1 + cosφE2)

= ω̄12(V )Ē2

= ∇̄V Ē1

And similarly for E2.
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In particular, for R2, we get the covariant derivative defined earlier: ifW =
∑
fiUi, then∇VW =∑

V [fi]Ui.

For curves, we want to define something like∇α′Y as we did before. But the quantities involved
are not necessarily defined on open sets. So we simply decide:

Y ′ = (f ′1 + f2ω21(α
′))E1 + Y ′ = (f ′2 + f1ω12(α

′))E2

What we have done is simply adapt the covariant derivative by replacing V [fi] with f ′i .

Definition: A vector field V on α in a geometric surface is parallel if V ′ = 0 along α.

In other words, V is paralle if the covariant derivative vanishes. Note that in this case, ⟨V, V ⟩′ =
2⟨V ′, V ⟩ = 0, so a parallel vector field has perfect length.

LEmma If alpha is a curve, and v a tangent vector at p = α(t0), then there is a unique parallel
vector field V so that V (t0) = v.

This follows from the uniqueness and existence theorems for differential equations. IN this case,
the conditions are: V ′(t) = 0 and V (t0) = v. It is not hard to see by the previous lemma that
the angle function has the corresponding conditions φ′ + ω12(α

′) = 0, and φ(t0) is the angle
between E1(p) and v. This allows us to get an explicit formula for φ by integrating. This is called
the parallel translation of v at p along α.

If v is taken by parallel translation around a closed curve, it might not end up as v when it returns
to the same spot, a phenomenon called holonomy. We know, however, that in particular:

φ(b)− φ(a) = −
∫
α

ω12

So we call this quantity ψα, the holonomy angle of α.

What is the relation between our new concept of the covariant derivative and the one we earlier
defined in Euclidean space? This is illuminated in the following lemma.

Lemma If V,W are tangent vector fields toM , and if ∇̃ denotes the Euclidean covariant deriva-
tive, then: - ∇V ,W is the component of ∇̃VW which is tangent toM . - ∇̃VW = ∇VW + (S(V ) ·
W )U Where S(V ) is the shape operator and U the associated unit normal.

To prove this, we need only prove the second condition, which implies the first. But we have by
definition using the connection forms:

∇̃V E1 =
∑

ωij(V )Ej

= ω12(V )E2 + ω13(V )E3

And the definition of the covariant derivative on surfaces gives:

∇VE1 = ω12(V )E2
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And, since E3 = U , we have:

ω13(V )E3 = (∇̃V E1 · E3)E3

= (∇̃V E3 · E1)E3

= (S(V ) · E1)U

We can do the same thing and instead take the covariant derivative of E2 to get out result, and
then prove the result for an arbitraryW = f1E1 + f2E2 by calculus.

0.4 Geodesics

We now can define geodesics without using the unit normal.

Definition: A curve γ in a geometric surface is a geodesic if γ′′ = 0; equivalently, γ′ is parallel;
equivlaently, γ′ has constant length.

Since acceleration is preserved by isometries, geodesics are isometric invariants under our new
definition. Indeed, that means if γ is a geodesic, then F ◦ γ is also a geodesic. We use the
notation:

α′ = v1E1 + v2E2

α′′ = A1E1 +A2E2

By definition, α is a geodesic iff A1 = A2 = 0. In particular, if we apply the above definition for
the covariant derivative of α, we arrive at the conditions:

A1 = v′1 + v2ω21(α
′) = 0

A2 = v′2 + v1ω12(α
′) = 0

We can indeed use an associated frame field, which gives the following equivalent conditions (I
will not go through the proof here):

A1 = a′′1 +
1

2E
(Eua

′2
1 + 2Eva

′
1a

′
2 −Gua

′2
2 ) = 0

A2 = a′′2 +
1

2G
(−Eva

′2
1 + 2Gua

′
1a

′
2 +Gva

′2
2 ) = 0

We now arrive at a theorem which gives us the ability to construct geodesics easily.

Theorem Given a tangent vector v to M , there exists a unique geodesic γ, defined around 0,
so that γ(0) = p, γ′(0) = v.

To prove this, let x be an orthogonal patch around p = x(u0, v0) (orthogonal meaning F = 0).
Let v = cxu + dxv. Then our above conditions become:

a′′1 = f1(a1, a2, a
′
1, a

′
2)

a′′2 = f2(a1, a2, a
′
1, a

′
2)
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And with the initial conditions (a1, a2)(0) = (u0, v0) and (a′1, a
′
2)(0) = (c, d). By the existence and

uniqueness of differential equations, we get our result.

Note that this allows us to extend geodesics infinitely. Let us fix a tangent vector v. Then at every
point, we have a unique geodesic γ pointing in the direction of v defined in a neighborhood of
0. If we pick a point near the edge of that neighborhood, we define another unique geodesic,
and so on. By gluing together all these geodesics, we get what's called a maximal geodesic.

Definition: A geometric surfaceM is complete if every maximal geodesic γv inM is defined on
the whole real line R.

Here, we only need to parametrize the maximal geodesics by their direction v. In a complete
geometric surface, a maximal geodesic runs infinitely. For example, on a sphere, a great circle is
a geodesic which repeats itself periodically and thus runs forever.

As it turns out, all compact geometric surfaces are complete.

Lemma Let E1, E2 be a frame field with constant speec so that α′ is never orthogonal to E2. If
A1 = 0, then α is a geodesic.

The proof is straightforward. Since α′ is constant length, we have ⟨α′, α′⟩′ = 2⟨α′′, α′⟩ = 0. So
indeed:

⟨A1E1 +A2E2, α
′⟩ = A1⟨E1, α

′⟩+A2⟨E2, α
′⟩ = 0

By hypothesis, A1 = 0. Since E2 is not orthogonal to α′, we must have A2 = 0, and thus indeed
α is a geodesic.

In particular, if you pick E1, E2 to be frame fields so that ⟨xu, xv⟩ = δij , then our above conditions
on A1, A2 can be simplified. Adding and integrating, we get:

Ea′21 +Ga′22 = const

We now introduce a critical notion for the next section. If β : I → M is aunit-speed curve on an
oriented surface, then we can define T = β′, N = J(T ) to get an analogue of the Frenet frame
field. We then get an analogue for curvature, the geodesic curvature kg:

T ′ = kgN

As a direct corollary, if φ is the angle between E1 and β′, then we have:

kg =
dφ

ds
+ ω12(β

′)

Note that in the case of Euclidean space, this confirms our notion that curvature measures the
``rate of turning'' of the tangent vector.

We get this by setting Y = T , α = β, and applying the definition of the covariant derivative for
vector fields with respect to curves on geometric surfaces. Another interesting consequence of
the definition of geometric curvature is that:
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α′ = vT

α′′ =
dv

dt
T + kgv

2N

Where v is the speed of the curve α. This formual gives is an easy condition to see if a curve is a
geodesic in terms of its geodesic curvature:

Lemma A regular curve α is a geodesic iff it has constant speed and kg = 0.

Since the speed v > 0 by regularity, by the above formula α′′0 is equivalent to the condition that
dv
dt = kg = 0. This means that α′′ is collinear to the tangent vector, as in our earlier definition of
geodesics (curves whose accelerations were normal to the surface). We can easily turn any curve
with kg = 0 (called a pre-geodesic) into a geodesic, then, by reparametrizing and setting speed
to be constant.

0.5 The Gauss-Bonnet Theorem

Definition: α : [a, b] → M is a regular curve segment in an oriented geometric surface. We
define the total geodesic curvature to be the quantity:

∫
α

kgds =

∫ s(b)

s(a)

kg(s(t))
ds

dt
dt

The total geodesic curvature is the analogue of the total Gaussian curvature, and we will soon
see there is a link between them.

Lemma Let α be a regular curve inM which has an oriented frame field E1, E2. Then we have:

∫
α

kgds = φ(b)− φ(a) +

∫
α

ω12

Where φ is the angle from E1 to α′ along α. This lemma follows from simply integrating our
earlier formula for the geodesic curvature.

We now begin the road to proving the famous Gauss-Bonnet theoerem, which tells us that the
total curvature is intricately connected to topological invariants of a surface.

Definition: Let x : R → M be a one-to-one regular patch from a 2-segment. We define the
exterior angle ϵj of x at the vertice pj to be the angle between the relevant tangent vectors of
the boundary curves. The interior angle ij is similarly π− ϵj ; the interior and exterior angles add
up to π.

Theorem Let x : R → M be a one-to-one, regular mapping to a 2-segment in a geometric
surfcaeM . If dM is an area form, then:

∫ ∫
x

KdM +

∫
∂x

kgds+ ϵ1 + ϵ2 + ϵ3 + ϵ4 = 2π
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This is often called the Gauss-Bonnet formula.

Proof We pick the associated frame field E1 = xu√
E
, E2 = J(E1), where J is the rotation opera-

tor. Then we have dM(E1, E2) = 1; we picked the positive orientation. By the second structural
equation:

dω12 = −Kθ1 ∧ θ2
= −KdM

Now, by Stokes Theorem, we have:

∫
∂x

ω12 =

∫ ∫
x

dω12 =

∫ ∫
x

−KdM∫
∂x

ω12 +

∫ ∫
x

KdM = 0

But recall earlier we defined:

∫
α

kgds = φ(b)− φ(a) +

∫
α

ω12

Adding up the integrals for each of the four boundary curves, we get the required result.

Definition: A regular decompositionD of a surfaceM is a finite collection xi of rectangles which
intersect at a common vertex or edge.

This is essentiall what we did earlier with the concept of a paving, but slightly modified.

Theorem Every compact surfaceM has a rectangular decomposition. Wewon't prove this here,
as it is a result from topology.

Theorem In dimension 2, two surfaces are diffeomorphic iff they are homemomorphic. We
won't prove this here.

What the above theorem implies is that topological invariants (those preserved by homeomor-
phisms) are now in fact preserved by diffeomorphisms. This reduces our work considerably, since
diffeomorphisms give us differentiability.

Theorem Let D be a rectangular decomposition of a compact surface. let v, e, f denote the
number of vertices, edges, faces in D. Then v − e + f , called the Euler characteristic χ(M), is
the same for each rectangular decomposition.

This theorem from topology tells us that the Euler characteristic does not depend on our rect-
angularization. So, if we have two separate rectangular decompositions, we can construct a
diffeomorphism by varying smoothly between them, and thus we know that diffeomorphic sur-
faces have the same Euler characteristic.
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Theorem IfM is a comapct, connected, orientable surface, there is a unique positive integer h
such thatM is diffeomorphic to Σ[h], which is the sphere with h handles added on.

A handle can be constructed as follows. Take any rectangular decomposition of M , and glue
together one ``tile'' from M to a tile from a rectangular decomposition of a torus. By looking
at the case of the sphere which has Euler characteristic 2, when we add on a handle we get a
surface diffeomorphic to a torus, which has Euler characteristic 0. In general, adding h handles
reduces the Euler characteristic of the sphere by 2h.

As a direct corollary, compact orientable surfacesM,N have the same Euler characteristic if and
only if they are diffeomorphic.

To prove this statement, consider that χ(M) = χ(N)means that both surfaces are diffeomorphic
to a sphere with h handles; so they are diffeomorphic to each other.

We can now state the incredible Gauss-Bonnet Theorem.

Theorem (Gauss-Bonnet) For a compact, orientable surface, we have:

∫ ∫
M

KdM = 2πχ(M)

This theorem connects a topological invariant (the Euler characteristic) to a geometric/isometric
invariant (the Gaussian curvature). In fact, this says that the Gaussian curvature is a topological
invariant.

Proof I will sketch the proof here, avoiding some details. First, we orient M by an area form
dM , and construct a rectangular decomposition D which is positively oriented (we can simply
reorder the tangent vectors until we get positive orientations on each rectangle). Then, D is an
oriented paving. We can now integrate to obtain:

∫ ∫
M

KdM =
∑∫ ∫

xi

KdM

But by the ealrier Gauss-Bonnet formula, we have:

∑∫ ∫
xi

KdM = −
∫
∂xi

kgds− 2π + i1 + i2 + i3 + i4

But on the intersection, we note that since all the rectangles have the same orientaton, the
Gaussian curvatures on boundary curves cancel out! This is similar to a common trick you see in
integration. If we split up a rectangle into four smaller rectangles and integrate over each, the
only terms that do not cancel are associated with the boundary curves. So we are left with:

∑∫ ∫
xi

KdM =
∑

−2π + i1 + i2 + i3 + i4

Where we are summing over the number of tiles in our paving (the number of faces). So we can
rewrite the sum above as:
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∑
−2π + i1 + i2 + i3 + i4 = −2πf +

∑
i1 + i2 + i3 + i4

Where f is the number of faces. Note that around every vertex, we have four interior angles
which add up to 2π. Therefore, we can reduce the sum on the right to obtain:

∑∫ ∫
xi

KdM = 2π(v − f)

And finally, we try to count the number of edges in a surface. If we simply multiply the amount
of faces by four, we are double counting, since every edge appears on two faces. So we have
4f = 2e. Equivalently above:

∑∫ ∫
xi

KdM = 2πχ(M)

And we are done.

0.6 Applications of Gauss-Bonnet

We know run through some simple consequences of the Gauss-Bonnet Theorem.

First, there is no metric on a sphere∑withK < 0. If there was, then the total Gaussian curvature
would be negative. But by Gauss-Bonnet, the total Gaussian curvature is 2πχ(M) = 4π, which is
positive.

Second, every compact, orientable geometric surfaceM which has K > 0 is diffeomorphic to a
sphere. If the geometric surface has positive total Gaussian curvature, then χ(M) is positive by
Gauss-Bonnet. But if we add even one handle to a sphere, the Euler characteristic drops to 0.
Therefore, any geometric surface is diffeomorphic to a sphere.

Theorem The following are equivalent on a compact, orientable surface. - There exists a non-
vanishing tangent vector field onM . - The Euler characteristic ofM is 0. -M is diffeomorphic to
a torus.

First, we prove that the first statement implies the second. We construct an associated frame
field from the non-vanishing vector field:

E1 =
V

|V |
E2 = J(E1)

By the second structural equation, dω12 = −KdM .

By Gauss-Bonnet:

∫ ∫
M

KdM = 2πχ(M)
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By Stokes' Theorem:

∫ ∫
M

KdM = −
∫ ∫

M

dω12

But for the associated frame field, ω12 = 0, so indeed this means the integral is 0 and thus so is
the Euler characteristic.

Next, we prove the second statement implies the third. If the Euler characteristic is 0, thenM is
diffeomorphic to a sphere with one handle, which is a torus.

Finally, we prove the third statement implies the first. We use xu, xv from the usual parametriza-
tion of the torus; either is a non-vanishing tangent vector field.

0.7 Summary

Much of our discussion of surfaces revolved around the Euclidean dot product. However, in
this chapter we showed that we can create arbitrary metric spaces on surfaces to obtain a Riem-
manian manifold. On a Riemannian manifold, many concepts and ideas see analogous results:
differential forms, frame fields, the structural equations, covariant derivatives, curvature, and
geodesics. An interesting result we can prove is that the total curvature is indeed a topological
quantity; thus, we have established a fundamental link between geometry and topology.
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