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We continue by analogy. First, we set up the essential machinery for discussing curves in R3,
such as frame fields, connection forms, and the structural equations in Part II. Then in Part III, we
discussed the geometry of R3, or more specifically, the unique properties which are preserved
by Euclidean isometries. Similarly, in Part V we discussed the machinery for discussing surfaces in
R3, namely the shape operator. And in Part VI we will discuss the intrinsic geometry of a surface
in R3, concluding as we did Part III with a congruence theorem for surfaces. Man, it's like poetry.
Makes me tear up.

0.1 The Fundamental Equations

Once more, the Cartan equations from Part II find their use. As with the Frenet frame approach,
we first need to set up a system of frames onM .

Definition: An adapted frame field Ei on a regionO inM ⊂ R3 is a Euclidean frame field (three
orthonormal vector fields) such that E3 is always normal toM .

Lemma On a region O in M ⊂ R3, there exists an adapted frame field if and only if O is
orientable and there exists a non-vanishing tangent vector field on O.

This condition is clearly necessary, since the orientable condition guarantees the existence of
a unit normal vector field (see: Part IV), and the tangent space condition guarantees us the
remaining two vector fields. From a unit vector field U and a tangent vector V , we can define a
frame:

E1 =
V

|V |
E2 = U × E1

E3 = U

This lemma immediately implies that on the image of any patch inM , there is an adapted frame
field onM in an open region. Thus adaptable frame fields exist on surfaces, at least locally.

Suppose Ei are an adapted frame field onM . We can extend the frame field so that it is defined
on an open set in R3. Now, we look at the connection equations:

∇vEi =
∑

ωij(v)Ej

This definition really only makes sense if we apply them to tangent vectors v to M . Now, we
have a set of 1-forms defined onM .

Again, ωij(v) defines the initial rate at which Ei rotates towards Ej as p moves in the direction v.

Corollary As a corollary, we can define the shape operator in terms of the connection forms,
since E3 = U is a unit normal vector field. Then:

Sp(v) = ω13(v)E1(p) + ω23E2(p)

This follows directly from the connection equations.
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We also can carry over directly the dual 1 -forms, θi(v) = v ·Ei, as long as we restrict v to tangent
vectors toM . This means that in particular, θ3(v) = 0, since E3 does not lie in the tangent plane.
Thus, due to skew-symmetry, we essentially only have five 1-forms:

• θ1, θ2 are dual to the tangent vector fields E1, E2.

• ω12 gives the rate of rotation of E1 towards E2.

• ω13, ω23 completely describe the shape operator.

Theorem The big one! If Ei is an adapted frame field on M ⊂ R3, then its dual forms and
connection forms satisfy:

First Structural Equations

dθ1 = ω12 ∧ θ2
dθ2 = ω21 ∧ θ1

Gauss Equation

dω12 = ω13 ∧ ω32

Codazzi Equations

dω13 = ω13 ∧ ω23

dω23 = ω21 ∧ ω13

The first structural equations are the same as in Part II. The second structural equations imply the
Gauss equations and the Codazzi equations, the former of which describes the rotation between
E1, E2 and the latter of which describes the shape operator. It is important to note that these
equations depend on the choice of frame field.

Since the corresponding connection forms describe the shape operator, the Codazzi equations
describe the rate at which the shape ofM is changing.

Lemma We can describe geodesics using connection forms. Let α be a unit speed curve inM .
If E1, E2, E3 is an adapted frame field where E1 = T along α (T being the unit tangent vector
from the Frenet frame), we claim that α is a geodesic if and only if ω12(T ) = 0.

First, denote E′
i = Ei(α(t)) at t = 0. But this is the same as the covariant derivative: E′

i = ∇α′Ei.
In particular for this curve, α′ = T .

Since Ei is an adapted frame field and T is a unit vector, E′
i must be entirely in the diretction of

E2. This means that: ω12(T ) = (∇TE1) · E2. But since α is a geodesic, α′′ is normal to M ; so
there is no such component in the E2 direction, so indeed ω12(T ) = 0.

So, the connection forms already find some use in making sense of curves on surfaces.
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0.2 Form Computations

If E1, E2, E3 is an adapted frame field on M ⊂ R3, we say that E1, E2 constitute a tangent
frame field onM . So any tangent vector field V onM can be decomposed into its components
V · E1, V · E2 along each of the tangent frames.

Thus, to show that two forms are equal, we just have to compare them on basis vector fields
E1, E2. So now we can equivalently form a ``basis'' of forms onM .

Lemma Let θ1, θ2 be the dual 1-forms of E1, E2 onM . If ϕ is a 1-form and ψ a 2-form, then:

ϕ = ϕ(E1)θ1 + ϕ(E2)θ2

µ = µ(E1, E2)θ1 ∧ θ2

The first statement comes easily from the criteria for equality of frame fields; the second comes
from our definition of the wedge product:

θ1 ∧ θ2(E1, E2) = θ1(E1)θ2(E2)− θ1(E2)θ2(E1)

= 1

Lemma
ω13 ∧ ω23 = Kθ1 ∧ θ2

ω13 ∧ θ2 + θ1 ∧ ω23 = 2Hθ1 ∧ θ2

To prove these equations, first we need to write a matrix representation of the shape operator
S. From the connection equations:

S(E1) = −∇E1E3 = ω13(E1)E1 + ω23(E1)E2

S(E2) = −∇E2E3 = ω13(E1)E1 + ω23(E1)E2

So the matrix of S is then:

[
ω13(E1) ω13(E2)
ω23(E1) ω23(E2)

]

Now, we test equality of forms in the usual way. For the first form:

(ω13 ∧ ω23)(E1, E2) = ω13(E1)ω23(E2)− ω13(E2)ω23(E1)

= detS
= K

And similarly for the second form:
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(ω13 ∧ θ2 + θ1 ∧ ω23)(E1, E2) = ω13(E1) + ω23(E2)

= trS
= 2H

And from the first half of this lemma and the Gauss equation, we get:

dω12 = −Kθ1 ∧ θ2

Which we will call the second structural equation. Since ω12 is something like the rate of rotation
of the tangent frame field E1, E2, its derivative K measures something like a second derivative
of E1, E2.

Definition: A principal frame field on M is an adapted frame field so that E1, E2 are principal
vectors ofM .

Where there are no umbilic points, there is a unique principal frame onM up to changes in sign.
We leave this proof out, but it's not hard to prove using linear algebra and some analysis.

Suppose we have a principal frame field on M , then we can rename the principal directions so
that S(E1) = k1E1 and S(E2) = k2E2. Thus by the basis formula from earlier, we have:

ω13 = k1θ1

ω23 = k2θ2

This leads us to an interesting corollary of the Codazzi equations.

Theorem If E1, E2, E3 is a principal frame field onM , then:

E1[k2] = (k1 − k2)ω12(E2)

E2[k1] = (k1 − k2)ω12(E1)

We can prove this just with differential forms algebra. First, we apply the Codazzi equations:

d(ω13) = d(k1θ1) = ω12 ∧ ω23

dk1 ∧ θ1 + k1dθ1 = k2ω12 ∧ θ2

But we also know from the First Structural Equations that dθ1 = ω12 ∧ θ2. So finally we have:

dk1 ∧ θ2 = (k2 − k1)ω12 ∧ θ2

To prove this statement, we simply apply each of the 2-forms to (E1, E2):

(dk1 ∧ θ2)(E1, E2) = (k2 − k1)ω12 ∧ θ2(E1, E2)

−dk1(E2) = (k2 − k1)ω12(E1)

Therefore:
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E2[k1] = dk1(E2) = (k1 − k2)ω12(E1)

And similarly for the second statement.

0.3 Some Global Theorems

We know apply our knowledge of the shape operator to draw some conclusions of (connected)
surfaces.

Theorem If S is identically zero, thenM is part of the plane in R3.

This means that the unit vector field E3 is the same vector everywhere. So, we pick a fixed point
p inM and consider any other point q inM , and draw a curve α inM so that α(0) = p, α(1) = q.
So we consider the function:

f(t) = (α(t)− p) · E3

df

dt
= α′ · E3 = 0

So indeed, since f(0) = 0, f is identically zero. By checking f(1), we see that indeed (q−p) ·E3 =
0, so that indeed, q lies in the plane normal to E3.

Theorem IfM is umbilic everywhere, thenM has constant Gaussian curvature.

To prove this, for each region in M we pick an adapted frame field E1, E2, E3. Since every
direction is a principal direction, indeed this is a principal frame field. So our earlier lemma from
the Codazzi equations in the previous section, we have:

dk(E1) = dk(E2) = 0

By the basis formulas, dk = 0 in the region. But then we know that dK = d(k21) = 2k1dk = 0. So
indeed, we have shown that K is constant everywhere since dK = 0 in every region ofM .

Theorem IfM is umbilic everywhere, andK > 0, thenM is part of a sphere in R3 of radius 1√
K
.

To prove this theorem, We will construct a point which is equidistant from every point inM . Pick
any point p ofM and denote the unit normal E3. Then we claim that the center is:

c = p+
1

k(p)
E3(p)

Now, we pick any point q ofM , and draw a curve α inM as in the preceding proof with α(0) =
p, α(1) = q. We extend E3 to a unit normal vector field all along α. Now all we have to do is
consider the curve:
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γ = α+
1

k
E3

How do we know k is a constant? Well, since E3 was extended continuously, k(p) is also contin-
uous; but our previous theorem tells us that the Gaussian curvature K = k2 is constant. Taking
the derivative of γ, we get:

γ′ = α′ +
1

k
E′

3

But by the definition of the shape operator (which we recall is just scalar multiplication at umbilic
points):

E′
3 = −S(α′) = −kα′

So indeed γ′ = 0, and γ is constant. So in particular:

γ(0) = p+
1

k
E3 = γ(1) = q +

1

k
E3

And in particular, |c− p| = |c− q|. Furthermore, since K = k2, the distance is indeed 1√
K
.

Combining the three previous theorems: A surface is all-umbilic if and only if M is a part of a
plane or sphere.

Corollary A compact all-umbilic surface is a sphere.

First, we note from topology that a connected space has only two clopen sets: the empty set,
and the whole space. In particular, both planes and spheres are connected.

Now, ifM is compact, then it is automatically closed and bounded. Furthermore, for each patch
in M , since x is continuous with continuous inverse, open sets map to open sets. Suppose that
M ⊂ N for some other surface N ; then this meansM , being the union of a collection of patches,
is indeed a collection of open sets and thus open. Since M is open and closed in a connected
surface N , it is either empty, or all of N itself.

IfM is compact, it can't be a plane; therefore it must be a sphere.

Before proceeding into the next theorem, we first prove a useful lemma which relates the Gaus-
sian curvature to the connection forms. First, by the basis theorem, we can write:

ω12 = ω12(E1)θ1 + ω12(E2)θ2

And we also have from an earlier lemma:

dω12 = −Kθ1 ∧ θ2

So, we differentiate each term in the earlier expansion of ω12:

7



dω12 = dω12(E1) ∧ θ1 + ω12(E1)dθ1

+dω12(E2) ∧ θ2 + ω12(E2)dθ2

But the first structural equations allow us to write dθi. And indeed if we apply the 2-form above
to the pair (E1, E2), we arrive at:

K = −dω12(E1, E2) = E2[ω12(E1)]− E1[ω12(E2)]− ω12(E1)
2 − ω12(E2)

2

This puts Gaussian curvature entirely in terms of covariant derivatives and connection forms.

Theorem On every compact surfaceM in R3, there is a point at which the Gaussian curvature
K is strictly positive.

We consider the real-valued (differentiable) function f(p) = p · p on a compact surface. SinceM
is compact, f attains a maximum at some point m onM$

Take any unit tangent vector u toM atm, and pick a unit curve α onM so that α(0) = m,α′(0) = u.
Then indeed, f(α(t)) also has a maximum there, i.e.:

d

dt
(f ◦ α)(0) = 0

d2

dt2
(f ◦ α)(0) ≤ 0

But we note that by our definition, d
dt (f ◦ α) = 2α · α. So indeed:

d

dt
(f ◦ α)(0) = 0 = 2(m · u)

So this means that m is normal to M , since it is perpendicular to any tangent vector, and this
means that locally,M looks like a sphere. Differentiating again:

d2

dt2
(f ◦ α)(0) = 2α′ · α′ + 2α · α′′

= 2(1 +m · α′′(0)) ≤ 0

Where the second equality comes from evaluating at t = 0.

Now, earlier we proved that m is a normal toM , so all we have to do is divide by its length r to
get a unit normal vector. Thus,m/r ·α′′ is exactly the normal curvature k(u) (See: Part V, Normal
Curvature). So our inequality then becomes:

k(u) ≤ 1

r

Since both principal curvatures satisfy this inequality, we have:

K(m) ≥ 1

r2
> 0

So we have shown there is a point where the Gaussian curvature is positive.
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Corollary As an immediate corollary, there is no compact surface in R3 with K ≤ 0. So if we
have a compact surface with constant Gaussian curvature, it must be positive. A sphere is an
example of such a surface -- and, as it turns out, it is the only example. To prove this, we begin
wth a lemma.

Lemma Let m be a point in M so that: - k1 achieves its local maximum at m. - k2 achieves its
local minimum at m. - k1(m) > k2(m)

Then, K(m) ≤ 0.

Proof First, if f is a differentiable function onM and V a vector field, then we have also a first
derivative V [f ] which yields a second derivative V V [f ] = V [V [f ]]. At a local maximum, it is not
hard to prove that V [f ] = 0 and V V [f ] ≤ 0, just as in calculus.

Now since k1 > k2 at m, and this is a strict inequality, then m is not umbilic; so there exists a
principal frame field E1, E2, E3 on a neighborhood of m, and indeed by calculus:

E1[m] = E2[m] = 0

E1E1[k2] ≥ 0

E2E2[k1] ≤ 0

Where the inequality follows from the fact that k2 achieves a minimum, and k2 a maximum. Now
we apply the Codazzi equations in the way they appear on a principal frame field, and discover
that at m:

ω12(E1) = ω12(E2) = 0

Now, by an earlier lemma:

K = E2[ω12(E1)]− E1[ω12(E2)]− ω12(E1)
2 − ω12(E2)

2

= E2[ω12(E1)]− E1[ω12(E2)]

To understand these terms, we apply Ei to the Codazzi equations to derive the inequalities:

E1[ω12(E2)] ≥ 0

E2[ω12(E1)] ≤ 0

And thus our earlier expression for K reveals that indeed, K ≤ 0.

Theorem Now we're finally ready to prove the theorem that a compact surface in R3 with con-
stant Gaussian curvature is indeed a sphere of radius 1√

K

Since the surface is compact, it is orientable, giving us a continuous shape operator and continu-
ous principal curvatures k1, k2. SinceM has constant Guassian curvature, we earlier proved that
K > 0. Since we're working on a compact surface, k1 has a maximum at some point p. Since K
is constant, that also means k2 is at a maximum.
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From the immediately preceding lemma, the only missing condition is that k1 > k2 at p; if that
were true, then K ≤ 0, which is a contradiction. So we know that k1 = k2, not just at this point,
but everywhere. SoM is all-umbilic and it is therefore a sphere.

Note that compactness is essential for this proof.

0.4 Isometries and Local Isometries

Definition: If p, q are points inM , we consider all the curves α from p to q. The intrinsic distance
ρ(p, q) is the greatest lower bound on the lengths L(α) of the curves.

Note that this is just a greatest lower bound; there is not necessarily an actual curve with that
length (due to limits). Now that we have a ``metric'', we can define an isometry.

Definition: An isometry F :M → M̄ of surfaces in R3 is a one-to-one mapping fromM onto M̄
that preserves dot products of tangent vectors. Explicitly:

F⋆(v) · F⋆(w) = v · w

Note that this was a theorem in Part III; the tangent map of an isometry in Euclidean space is
simply its orthogonal component, evaluated at F (p), and therefore dot products are preserved.
Along with dot products, of course, we get lengths and orthogonality. It follows that isome-
tries are regular mappings (its tangent map is one-to-one), because the tangent map sends zero
vectors to zero vectors; and indeed this means that by the inverse function theorem, F is a
diffeomorphism, i.e. has an inverse mapping (which is also an isometry).

Theorem Isometries preserve intrinsic distance.

We would hope that this holds. To prove this, consider any curve and recall how we defined its
arclength by integrating its speed. Well, for any curve α, α′ is a tangent vector; thus isometries
preserve the norm of α′ (speed), and therefore preserve arclength.

If there is an isometry between two surfaces, we call them isometric; for example, bending a
piece of paper without stretching, folding, or tearing is an isometry.

Definition: A local isometry F : M → N of surfaces is a mapping that preserves dot products
of tangent vectors.

Thus a local isometry need not be one-to-one and onto, and thus F is not necessarily a dif-
feomorphism. However, since F is regular on some neigborhood of any point, F carries that
neigborhood diffeomorphically to a neighborhood of F (p). Indeed, a local isometry works like
an isometry, but only locally.

Lemma Let F :M → N be a mapping. For each patch x : D →M , we consider the composite
mapping:

x̄ = F (x) : D → N

Then, F is a local isometry if and only if for each patch x we have:

10



E = Ē

F = F̄

G = Ḡ

We prove both directions simultaneously.

First, recognize that we only need to show that F⋆ preserves dot products between xu, xv. The
curve α = x(u, v0) for which α′ = xu gets sent by F to F ◦α, a curve in N for which (F ◦α)′ = x̄u,
So indeed:

F⋆(xu) = x̄u

F⋆(xv) = x̄v

And since F is a local isometry, it therefore preserves dot products and therefore E,F,G. Revers-
ing this argument, we deduce the converse statement; the tangent map preserves dot products,
therefore it is a local isometry.

We can use this theorem to construct local isometries. Suppose we have x : D → M and
y : D → N . Then we can construct a mapping:

F (x(u, v)) = y(u, v)

And if E = Ē, F = F̄ , G = Ḡ, then F is a local isometry.

Definition: A mapping of surfaces F : M → N is conformal provided there exists a real-valued
function λ > 0 onM such that:

|F⋆(vp)| = λ(p)|v(p)|

The function λ is called a scale factor for F . This is a generalization of a local isometry where dot
products are not preserved, but at a certain point the tangent vectors are all stretched by the
same factor.

0.5 Intrinsic Geometry of Surfaces in R3

As before, we wish to study the properties of surfaces preserved by isometries, but not by arbi-
trary mappings. First note that since dot products are preserved, we still have tangent frames.
From an adapted frame field we still have E1, E2 and their dual forms. What else can we say?

Lemma The connection form ω12 is the only 1-form that satisfies the first structural equations:

dθ1 = ω12 ∧ θ2
dθ2 = ω21 ∧ θ1

To prove this, we apply the wedge products on the RHS to the pair of tangent vector fields
E1, E2:
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dθ1(E1, E2) = ω12(E1)

dθ2(E1, E2) = ω21(E2) = −ω12(E2)

Thus, by the basis lemma, the connection form ω12 is completely determined by θ1, θ2, which
as we said before, is preserved by isometries. In fact, we can regard the above lemma as the
definition of the connection forms, and it has nothing to do with the shape operator or covariant
derivatives, just differential forms.

If F : M → M̄ is an isometry, we transfer the tangent frame E1, E2 at p to the pair Ē1, Ē2 =
F⋆(E1), F⋆(E2) at F (p) = q (which is unique). This is also a frame field. Succinctly, we write:

F⋆(E1) = Ē1

F⋆(E2) = Ē2

Lemma Let F :M → M̄ be an isometry, and let E1, E2 be a tangent frame field onM . Then if
Ē1, Ē2 is the transferred frame field on M̄ , then:

θ1 = F ⋆(θ̄1)

θ2 = F ⋆(θ̄2)

ω12 = F ⋆(ω̄12)

Proof First, we check the dual forms on a basis. By definition:

F ⋆(θ̄i)(Ej) = θ̄i(F⋆(Ej)) = θ̄i(Ēj) = δij

So indeed, the pullback of the dual forms work exactly the same way. Next, we check the con-
nection forms, remembering the first structural equation:

dθ1 = ω12 ∧ θ2

Recall that F⋆ preserves wedge products and ``commutes'' with exterior derivatives (Part IV). So
we have:

d(F ⋆( ¯θ1)) = F ⋆(dθ̄1) = F ⋆(ω̄12) ∧ F ⋆(θ̄2)

By the first part of our lemma we can rewrite θ1 = F ⋆(θ̄1) and similarly for θ2 to obtain:

dθ1 = F ⋆(ω̄12) ∧ θ2

And similarly:

dθ2 = F ⋆(ω̄21) ∧ θ1

But now by the uniqueness lemma, we have uniquely determined F ⋆(ω̄12) = ω12, as this is there
is only one connection form satisfying the first structural equations.
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Theorem We now arrive at Gauss' Theorema Egregium (Remarkable Theorem), which is really
pretty remarkable. Simply, the Gaussian curvature is invariant under local isometry. More explic-
itly, if F :M → M̄ is an isometry, then:

K(p) = K̄(F (p))

Proof For an arbitrary point p ∈M , we pick a tangent frame field E1, E2 in a neighborhood of
p and then transfer via F⋆ to a tangent frame field Ē1, Ē2. By the previous lemma, ω12 = F ⋆(ω̄12)
as well. According to an earlier theorem, we can compute:

dω̄12 = −K̄θ̄1 ∧ θ̄2

Now we push forward this equation by applying F⋆ to both sides, and arrive at:

dω12 = −K̄(F )θ1 ∧ θ2

Where K̄(F ) = F⋆(K̄).

Thus, by comparison, indeed K = K̄(F ).

The key point of this proof was the second structural equation, dω12 = −Kθ1 ∧ θ2.

Note Philosophical note: the inhabitants ofM don't have any knowledge of the shape operator
or really even the shape of M ; but they can determine the Gaussian curvature of their surface,
just by constructing a local frame. An isometry may change the principal curvature, but it does
not change their product. Local isometries also preserve Gaussian curvature, albeit only locally.

A plane and a cylinder are both called flat, even though a cylinder is ``curved'', because they
have the same Gaussian curvature by local isometries.

0.6 Orthogonal Coordinates

So we can completely describe the intrinsic geometry of a surface with three forms θ1, θ2, ω12

derived from a frame field E1, E2. These forms are completely determined by:

**First Structural Equations:

dθ1 = ω12 ∧ θ2
dθ2 = ω21 ∧ θ1

Second Structrual Equations:

dω12 = −Kθ1 ∧ θ2

Now, we will come up with a practical way to compute all these forms and thus the Gaussian
curvature.
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Definition: An orthogonal coordinate patch x : D →M is a patch for which F = xu · xv = 0.

And indeed, dividing by
√
E and

√
G, we can turn xu, xv into a frame field.

Definition: The associated frame field E1, E2 of an orthogonal patch x : D →M consists of the
orthogonal unit vector fields:

E1 =
xu√
E

E2 =
xv√
G

At the point x(u, v).

With each patch we can come up with coordinate functions ũ, ṽ which give us for each point
x(u, v) the cooresponding coordinates via the inverse function. We refer to these as u, v from
now on. It is not hard to prove that:

du(xu) = 1

du(xv) = 0

dv(xu) = 0

dv(xv) = 1

So we can concisely write the dual forms for our associated frame field as:

θ1 =
√
Edu

θ2 =
√
Gdu

And by using the structural equations (I leave the differential forms algebra to you), you can also
solve for ω12 and K the way we did before.

0.7 Integration and Orientation

We start with a patch x : D →M and ask what its area should be. We start with a rectangle, with
sides ∆u,∆v.

Under themap, it gets distorted into a rectangle with sides xu∆u and xv∆v. So, to find the length
of the parallelogram, we take the cross product and arrive at |xu × xv|∆u∆v ≈

√
EG− F 2dudv.

Thus, we define something like an area by integrating this quantity. There's one small problem:
patches have open domains, and integrals are defined for closed and bounded sets. So we
define:

Definition: The interior Ro of a rectangle [a, b] × [c, d] is the open set (a, b) × (c, d). A two-cell
x : R→M is called patchlike if the mapping x : Ro →M is a patch inM .

The function
√
EG− F 2 is bounded in a rectangle, so the area is well-defined and finite. Note

that a patchlike segment is not necessarily one-to-one. To define something similar for a more
complex region, we add up the areas of a bunch of smaller regions.

Definition: A paving of a region P in a surface M is a finite number of patchlike 2-segments
x1, x2, ...xk whose images fillM in such a way that each point ofM is in at most one set xi(Ro

i ).
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Not all regions are pavable, but it turns out that an entire compact surface is pavable. To find its
area, we sum together the area of all its regions.

To get amore rigorous definition in terms of differential forms, we first remember howwe defined
the integration of a 2-form µ. We defined:

∫ ∫
x

µ =

∫ ∫
R

µ(xu, xv)dudv

So in particular, we want to pick a µ(xu, xv) =
√
EG− F 2. We now define such a form.

Definition: An area form on a surfaceM is a differentiable 2-form µ so that its value on any pair
of tangent vectors is:

µ(v, w) = ±|v × w|

Due to the linearity of forms, equivalently µ(E1, E2) = ±1 for every frame E1, E2 onM . The sign
ambiguity cannot be avoided if we want to keep, for example, Stokes' Theorem.

Lemma A surface M has an area form iff it is orientable. On a connected orientable surface,
there are precisely two area forms, denoted ±dM .

First, we know that a surface is orientable iff there is a non-vanishing 2-form on it. So if M has
an area form, it is orientable. Given an orientable surface with a unit normal U , we can construct
its area form:

dM(v, w) = ±U · v × w

To orient a surface, we pick a unit normal. Let x be a patchlike segment, then we can then define:

∫ ∫
x

dM =

∫ ∫
R

dM(xu, xv)dudv

There are three cases here depending on the sign of dM .

• If dM(xu, xv) is positive, we say x is positively oriented; dM =
√
EG− F 2

• If dM(xu, xv) is negative, we say x is negatively oriented; dM = −
√
EG− F 2

To find the area of a pavable region P, we must use a paving that is positively oriented (each
of its patches is positively oriented). Then we can construct the area by simply summing the
integrals over each patchlike segment.

Definition: Let v be a 2-form on a pavable oriented region P in a surface. Then, the integral of
v over P is defined:

∫ ∫
P
v =

∑
i

∫ ∫
xi

v

Where x1, x2, ...xk is a positively oriented paving of P.
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Definition: Let f be a continuous function on a pavable region P, then we define its integral
over P to be:

∫ ∫
P
fdM

We can rigorously define the integration of any strictly positive function on an arbitrary region
by taking the least upper bound of all of its integrals over all pavable regions.

0.8 Total Curvature

We define another interesting invariant of a surface, its total curvature.

Definition: Let K be the Gaussian curvature of a compact surface M oriented by an area form
dM . Then we define the total Gaussian curvature ofM as the integral:

∫ ∫
M

KdM

Definition: Let M,N be surfaces oriented by area forms dM, dN . Then the Jacobian of the
mapping F :M → N is the real-valued function JF so that:

F ⋆(dN) = JF dM

So essentially, if we pull back an area form on N , we want to quantify by how much we shrink to
get an area form onM :

JF dM(v, w) = F ⋆(dN)(v, w) = dN(F⋆(v), F⋆(w))

In particular, this means that F is regular iff JF is nonzero at a point. The above equation also
sufficiently motivates the following definitions:

Definition: If JF (p) > 0, F is orientation preserving at p. If JF (p) < 0, it is orientation revers-
ing.

This also motivates a new way of calculating a signed area:

Definition: Let M,N be surfaces with a mapping F : M → N . Then we define the algebraic
area of F (M) to be:

∫ ∫
M

JF dM =

∫ ∫
M

F ⋆(dN)

If F switches orientation on a region, then that region's area makes a negative contribution, and
similarly for preserving orientations.

In particular, we look at theGauss map, which sends each point on a surface to the corresponding
unit normal on the unit sphere. From the geometry of a sphere (the unit normal is always pointing
outwards), we know that the unit normal Ū(G(p)) on the sphere is parallel to to G(p), and thus
to U(p) on the original surface itself.
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Theorem The Gaussian curvature K of an oriented surfaceM is the Jacobian of its Gauss map.

First, note that:

−S(v) =
∑

v[gi]Ui(p)

G⋆(v) =
∑

v[gi]Ui(G(p))

And indeed this means that these two vectors are parallel.

To prove this theorem, we must show the equivalence of the 2-forms: KdM and G⋆(d
∑

), where∑ is the unit shere S2. As always, we test this out by applying both forms to the (linearly inde-
pendent) pair (v, w).

KdM(v, w) = K(p)[U(p) · v × w]

= U(p) · S(v)× S(w)

To prove that last equality, simply write the matrix of S with respect to the basis v, w, take the
cross product of an arbitrary pair (av + bw, cv + dw), and note that the result is detSv × w.

On the other hand, for G⋆(d
∑

):

G⋆(d
∑

) = d
∑

(G⋆(v), G⋆(w)) = Ū(G(p)) ·G⋆(v)×G⋆(w)

First, we noted earlier that U(p) and Ū(G(p)) are parallel. Furthermore, G⋆(v) and −S(v) are
parallel and the minus signs cancel. So indeed the triple products above are equal.

Corollary The total Gaussian curvature of an oriented surfaceM is precisely the algebraic area
of the image of its Gauss map G :M → S2.

This follows from the earlier theorem simply by integrating overM .

Corollary Let R be an oriented region inM on which: - The Gauss map is one-to-one - K does
not change sign

Then the total curvature of R is, up to a sign, the area of R; the sign is determined by the sign
of K.

Evidently, this also means that the total curvature is bounded by the area of ∑, which is 4π.

On an oriented surface, we can define rotation rigorously as well.

Definition: On an oriented surface, the rotation operator is J(v) = U × v.

This operator rotates tangent vectors by 90 degrees counterclockwise.

Definition: Let v, w be unit tangent vectors at a point p on an an oriented surfaceM . A number
φ is called an oriented angle from v to w if:

w = cosφv + sinφJ(v)
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So indeed, an oriented angle measures rotation in the (well-defined) plane determined by v and
J(v).

Lemma Let α be a curve on an oriented surface M . If V,W are nonvanishing tangent vector
fields on α, then there is a differentiable function φ on I such that φ is the oriented angle between
V (t) andW (t).

WLOG, we turn V and W into unit frame fields and define the frame field V, J(V ) on α. By
orthonormal expansion, we can define W = fV + gJ(V ). And finally, since W is of unit length,
we can define f = cos θ and g = sin θ. φ is then called an angle function from V toW .

Indeed, on an oriented surface, if we pick dM on positively oriented patches, with positively
oriented frame fields, then we have dM = θ1 ∧ θ2.

In particular, given any nonvanishing vector field V on M , by the above discussion we can gen-
erate a positively oriented frame field. Namely, we take V, J(V ) and make them unit length; the
resulting frame E1, E2 is called the associated frame field of V .

0.9 Congruence of Surfaces

Finally, we get to the moment we've been waiting for: establishing congruence of surfaces. We
assume for simplicity we're working with connected, orientable surfaces.

Definition: Two surfaces are congruent if there is an isometry that carries one surface directly
onto the other.

Theorem If F is a Euclidean isometry such that F (M) = M̄ , then its restriction to M is an
isometry of surfaces, and F preserves shape operators, i.e.:

F⋆(S(v)) = S̄(F⋆(v))

The first part of this theorem is fairly obvious. The restriction of F⋆ should still preserve dot
products of tangent vectors, and the restriction of F is by hypothesis one-to-one and onto, and
therefore we have an isometry.

We look at the shape operators. Let U be a unit normal in M . Since F⋆ preserves dot products
and therefore orthogonality, F⋆(U(p)) is indeed orthogonal to all the tangent vectors at F (p).
Thus:

F⋆(U(p)) = Ū(F (p))

Where Ū is one of the two unit normals on M̄ . So we define the two shape operators S derived
from U and S̄ defined from Ū . So we pick a curve α with initial velocity v, and map it to F (α),
a curve with initial velocity F⋆(v). But we know that the tangent map of an isometry preserves
velocities, so:

F⋆(S(v)) = −F⋆(U
′) = −[F⋆(U)]′ = −Ū ′ = S̄(F⋆(v))

And indeed this is well-defined since v and S(v) both lie in the tangent space ofM .
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So we know that by definition, congruent surfaces are isometric. But not all isometric surfaces
are congruent. To make the converse relation true, we need to talk about the shape operator.
Just as before, we defined congruence by looking at κ and τ for curves, we define congruence
for surfaces by looking at the shape operator.

To prove this statement, we first prove a lemma about the congruence of curves theorem, which
is instrumental to this generalization.

Lemma Let α, β be two curves defined on the same interval with frame fields E1, E2, E3 and
F1, F2, F3 respectively. For any t0 ∈ I, if F is the unique Euclidean isometry that sends each
Ei(t0) to Fi(t0), or equivalently if: - α′ · Ei = β′ · Fi - E′

i · Ej = F ′
i · Fj

Then the two curves are congruent, with F (α) = β.

We won't consider the full proof here but the main takeaway is this: if you have two curves
for which the velocities have the same expansion (relative to the respective frames) and the
derivatives of the frames have the same expansion (relative to the respective frames), then indeed
the two curves are congruent.

Theorem Let M and M̄ be oriented surfaces in R3, and let F : M → M̄ be an isometry of
oriented surfaces between them, such that the shape operators are preserved, i.e.:

F⋆(S(v)) = S̄(F⋆(v))

Then,M and M̄ are congruent; there is a Euclidean isometry whose restriction is precisely F .

I'll just proceed with the sketch of a proof here. First, we take the unique Euclidean isometry
which pushes forward a tangent frame at p in M to precisely the pushforward of that tangent
frame under F , and which pushes forward the unit normalE3 at p determining the shape operator
ofM to the unit normal Ē3 at F (p) determining the shape operator of M̄ . In other words, if we
have a Euclidean isometry whose restriction toM is F , then certainly its tangent map agrees with
that of F . Fix a point p0 and for any point p, let α be any curve inM between the two points.

Next, transfer a tangent frame field onM via the isometry F to a tangent frame field on M̄ , and
append the respective unit normals to get adapted frame fields forM, M̄ .

Finally, we confirm the conditions of our previous lemma using the properties of isometries (they
preserve velocities and derivatives). The expansion of α′ in the first frame is the same as the
expansion of F (α′) in the second frame. Using the pullback of the connection forms as well as
the fact that isometries preserve shape operators, we prove that E1, E2 has the same expansion
inM as Ē1, Ē2. Thus, we have found a Euclidean isometry which restricts to F ; and indeed, this
means every curve inM is congruent to a curve in M̄ , so we are done.

To draw analogy with the congruence theorem for curves: isometries between (orientable, con-
nected) surfaces function sort of like reparametrizations of unit-speed curves on the same interval.
And matching curvatures and torsions loosely correspond to matching shape operators. Putting
the two kinds of hypotheses together yields a sufficient condition for congruence.
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