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We can now study the shape of surfaces through the lens of linear algebra, namely a symmetric
operator called the shape operator. We draw comparison with the Frenet formulas and their
generalizations using the connection forms1, which describe curves in terms of their curvature
and torsion, to develop similar machinery describing surfaces. Finally, we generalize the unique-
ness theorem for curves2 to a congruence theorem for surfaces, although that will have to wait
until Part VI.

0.1 The Shape Operator of M ⊂ R3

Recall how we defined the covariant derivative of a vector field Z with respect to a vector v,
denoted as ∇vZ. By an earlier lemma, we were able to show that in Euclidean space:

∇vZ =
d

dt
Z(p+ tv) |t= 0

=
∑

v[wi]Ui

This definition still more or less makes sense for any vector field on a surface if we pick v tangent
to a surfaceM so that the derivative is defined. In addition to the earlier method of computation,
we can also refer to the definition of derivatives on surfaces to obtain:

∇vZ = (Zα)
′(0)

=
∑

v[wi]Ui

Where Zα is the vector field Z restricted to a curve α through a point p where α′(0) = v.

Using the covariant derivative, we now define the shape operator.

Note that if a surface is orientable, it has a (differentiable) unit normal vector field U everywhere.
If it is connected, there are exactly two (in opposite directions). For a non-orientable surface, we
still have local parameter curves, which allow us to create a local unit normal vector field. All this
tells us that the following definition makes sense for surfaces.

Definition: If p ∈ M , then for each tangent vector v to M at p, define the shape operator:

Sp(v) = −∇vU

Where U is a normal vector field to M defined in a neighborhood of p.

The shape operator tells us how the normal to the tangent plane (and thus the tangent plane
itself) is moving in every direction; so it tells us the way M is curving in all directions at p.

Lemma Suppose p ∈ M ⊂ R3. Then Sp is a linear map from the tangent space Tp(M) to itself.

The linearity of the shape operator is clear from the properties of covariant derivatives. Further-
more, since U has unit length everywhere, the derivative of |U | = 0 everywhere. So we have:
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0 = v[U · U ] = (∇vU) · U(p)

So indeed the shape operator is orthogonal to the unit normal, and thus lies in the tangent plane.

Example For example, take a sphere of radius r. It is evident that the unit normal is pointing
out radially from the center everywhere. So we have:

Sp(v) = −∇vU = −1

r

∑
v[xi]Ui

= −v

r

This has some geometric meaning; the shape operator simply is scalar multiplication, and this
reflects in the uniformity of the sphere itself. The sphere bends in the same exact way at every
point.

Lemma The shape operator is symmetric, i.e.:

S(v) · w = S(w) · v

This proof appears later on the chapter.

0.2 Normal Curvature

The first application of the shape operator is in the discussion of normal curvature.

Definition: Suppose u is a unit vector tangent to M at p. Then k(u) = S(u) · u is called the
normal curvature of M in the u direction.

So what does the normal curvature mean? First, we prove a brief lemma.

Lemma Suppose α is a curve in M . Then:

(α · U) = 0

α′′ · U + α′ · U ′ = 0

α′′ · U = −α′ · U ′ = S(α′) · α′

First, we differentiated both sides. In the second step, we note that S(α) = −U ′, perhaps
abusing notation to really get across the point that covariant derivatives are derivatives, and in
a fairly straightforward way, too. In fact, using the chain rule we can define S(α′) = −∇α′U =
−U(α(t))′(0).

The interpretation of this lemma is that all curves with a given velocity v have the same normal
component of acceleration; namely a multiple of the normal curvature of v̂.

So we parametrize α to be in particular a unit speed curve in M so that α′(0) = u. Then we can
compute:
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k(u) = S(u) · u
= α′′ · U
= κN · U
= κ cos(θ)

Where θ is the angle between the normal vector to the curve (N ) and the unit normal to the
surface (U ), and κ is our familiar curvature. So the maximum possible value the normal curvature
can take is in fact, our regular notion of curvature.

Tomakemore geometric sense of this, we define the normal section ofM through the u direction,
which is the plane containing U as well as u; this plane slices out a curve σ inside of M . If we
choose to make σ unit speed, then σ′(0) = u, and indeed the normal vector N = ±U , the unit
normal vector for the surface. So we can say that the normal curvature of M in the direction of
u is just the curvature of the unit-speed curve determined by the corresponding normal section.

Definition: The maximum and minimum values of k(u) at M are called the principal curvatures
of M at p, denoted k1, k2. The corresponding directions are called principal directions.

It should maybe become clear to you now that these are precisely the eigenvalues and eigenvec-
tors of the shape operator, for these are precisely the vectors u such that S(u) = ±cu.

Definition: A point p is unmbilic if k(u) is constant everywhere.

At an umbilic point, the shape operator is just multiplication on tangent vectors. So the following
computations only apply to a non-umbilic point. Due to the fact that S is linear, its action is
completely determined by its evaluation in principal directions. And furthermore due to the fact
that S is symmetric, it has a set of orthogonal eigenvectors3. So for any unit vector u, we can
write u = cos θe1+sin θe2, where e1, e2 are unit vectors in the principal directions. Then, by linear
algebra:

k(u) = S(u) · u = S(cos θe1 + sin θe2) · (cos θe1 + sin θe2)
= k1 cos2 θ + k2 sin2 θ

Fun fact, this is called the Euler curvature formula. He really got around, didn't he.

0.3 Gaussian Curvature

The following two measures have some geometric significance, but their use won't become to-
tally obvious until a bit later. We define:

Definition: The Gaussian curvature of a surface K = k1k2 is the product of its principal values
(the determinant of the shape operator).

Definition: The Mean curvature of a surface H = k1+k2

2 is the mean of its principal values (half
the trace of the shape operator).

Interestingly, the Gaussian curvature does not change if we change the sign of U . The sign of
the Gaussian curvature can actually tell us quite a lot about the surface. For example:

3post/2017/07/02/symmetric-matrices.html

4

post/2017/07/02/symmetric-matrices.html


• If K > 0, the principal directions have the same signs, so M is bending away from the
tangent plane in all directions (like a bowl), though it could be upwards or downwards.

• If K < 0, the principal directions have opposite signs, so M is ``saddle''-shaped.

• If K = 0, one or both of the principal values is zero. If it's just one, M is shaped like a ``U''.
If it's both, then M looks like a plane near the point.

Using K and H, you can determine computational formulas for k1, k2. I won't get too much into
those, as they all really have the same upshot. Let's take for example the algebraic identity:

k1, k2 = H ±
√
H2 −K

An immediate corollary of this is that k1, k2 are continuous, and away from umbilic points where
the quadratic discriminant is zero, they are also differentiable.

Definition: A surface M is flat if K = 0, and minimal if H = 0.

0.4 Computational Techniques

Now we get into the every-day process of computing shape operators. We first define for any
patch x of a surface M :

E = xu · xu

F = xu · xv

G = xv · xv

These tell us more or less what the inner product looks like on Tp(M), since we know that xu, xv

form a basis for the tangent space at a point. For example, if v = axu + bxv and w = cxu + dxv,
then we can easily check that:

v · w = Eac+ F (ac+ bd) +G(bd)

Furthermore, |xu × xv|2 = EG−F 2 by distributivity. You may recognize this as a quadratic form.

We also generally compute the unit normal vector. Luckily, for a patch x, we can always use:

U =
xu × xv

|xu × xv|

And finally, we can define the shape operator just by looking at the following values:

L = S(xu) · xu

M = S(xu) · xv = S(xv) · xu

N = S(xv) · xv

Similarly to the earlier case, these coefficients allow us to compute S(v) · w where v, w are ex-
pressed with respect to the xu, xv basis, and indeed we get a quadratic form again. As promised
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before, we have essentially proven that the shape operator is symmetric. So how do we compute
L,M,N? Well, by the Leibniz rule we have:

0 =
∂

∂v
(U · xu)

0 = ∇vU · xu + U · xuv

S(xu) · xv = U · xuv

So this gives us easier formulas to compute L,M,N :

L = S(xu) · xu = U · xuu

M = S(xu) · xv = U · xuv

N = S(xv) · xv = U · xvv

So we merely need to compute the normal components of the second derivatives of x.

Using vector formulas, we can get the following convenient formula for the Gaussian curvature:

K =
LN −M2

EG− F 2

0.5 Special Curves in a Surface

Now we look at some important classes of curves on a surface, the principal, normal, and asymp-
totic curves.

Definition: A regular curve α is a principal curve if α′ always points in a principal direction.

Lemma If α is a regular curve, and U is a normal vector field, then α is a principal curve iff α′ is
collinear with U ′ at each point. Furthermore, the principal curvature of M in the direction of α′

is k = α′′·U
α′·α′ .

The first part of the theorem we get basically for free as a consequence of how we defined
principal curves (they maximize the covariant derivative of U ). The second theorem follows from
a few steps of vector algebra:

k1 = k(
α′

|α′|
)

= S(
α′

|α′|
) · α′

|α′|

=
S(α′) · α′

α′ · α′

=
α′′ · U
α′ · α′

The second equality comes from the linearity of the shape operator. The final equality comes
from a lemma in the normal curvature section of this chapter.

6



Lemma Let α be a curve cut from a surface M by a plane P . If the angle between M and P is
constant along α, then α is a principal curve of M .

Let U, V be the normal vector fields to M,P respectively. Since the angle between them is
constant, we have:

0 = (U · V )′ = U · V ′ + U ′ · V = U ′ · V

Where the last equality follows from the fact that V is constant. So we know that U ′ is orthogonal
to U and to V . Similarly, α′ is orthogonal to U since it is a tangent vector, and orthogonal to V
since it lies on the plane P . So the two are collinear. By our earlier lemma, α is a principal curve.
We omit the case where U = ±V , in which case α is trivially principal.

The geometric meaning of this theorem is that for a surface of revolution, the meridians and
parallels (which are cut from the surface with the ``right'' planes) are principal curves.

So we covered curves for which the normal curvature is k1 or k2. On the other extreme, what
about points where the normal curvature k = 0?

Definition: A direction in which the normal curvature is zero is called asymptotic. An asymptotic
curve α is one where α′ always points in an asymptotic direction.

The asymptotic directions at a point are the ones whereM does not bend away from the tangent
plane at all. Let's take a look at the possibilities depending on the Gaussian curvature.

• K(p) > 0. In this case k1, k2 share the same sign. By the intermediate value theorem, there
is no asymptotic direction.

• K(p) < 0. There are exactly two asymptotic directions at p. They are bisected by the
principal curves. From Euler's curvature formula, it should be easy to see that tan2 θ = −k1

k2

defines the angle between the asymptotic and a principal direction.

• K(p) = 0. There is either one asymptotic (also principal) direction; or p is a planar point,
and all directions are asymptotic trivially.

As a quick corollary, we can check the following fact. Suppose α is on M ; then U · α′ = 0. By
the product rule, this means that U ′ · α′ = −U · α′′. Thus, a curve is asymptotic if and only if its
acceleration has no normal component.

By the Euler curvature formula, we also have an important result for minimal surfaces. We find
that minimal surfaces have two orthogonal asymptotic curves at each point which is non-planar.

Finally, we discuss special curves called geodesics.

Definition: A curve α ∈ M is geodesic if α′′ is always normal to M .

So, whereas an asymptotic curve has no normal component of acceleration, a geodesic has only
a normal component of acceleration. For inhabitants of the surface, a geodesic is a curve where
there appears to be no acceleration at all, so these are the ``straight lines''.

It isn't hard to show as well that geodesics have constant speed, since α′′ is normal to α′.

In particular, if a unit-speed curve α lies in a plane P everywhere orthogonal to M along the
curve, the α is a geodesic. The two orthogonal vectors α′ and α′′ are both orthogonal to M ,
and α′ is tangent to M , so it must be the case that α′′ is normal to M . As a consequence, all
meridians are geodesics on a surface of revolution.
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We summarize these three special kinds of curves:

• A principal curve: k(α) = k1, k2. S(α′) is collinear to α′.

• An asymptotic curve: k(α) = 0. S(α′) is orthogonal to α′. α′′ is tangent to M .

• An geodesic curve: α′′ is normal to M .

Since the shape operator is a linear map on the tangent space, think of principal curves as ``eigen-
curves''. A geodesic curve is, as we mentioned before, kind of a generalization of a straight line.
One interesting application of geodesics is in finding shortest paths on surfaces, but we'll get to
that later.

0.6 Surfaces of Revolution

This section is pretty much optional and exists solely to show the apparatus in action.

We discuss a particular class of surfaces to get a better sense of these concepts: surfaces of
revolution. These have a ``profile'' curve:

x(u) = (g(u), h(u))

And we can extend this to a surface of revolution if h(u) > 0:

x(u, v) = (g(u), h(u) cos(v), h(u) sin v)

We'll compute the whole shape operator apparatus for a surface of revolution. First, we compute
a basis for the tangent space:

xu = (g′, h′ cos v, h′ sin v)
xv = (0,−h sin v, h cos v)

Take their dot products to get E,F,G:

Take their cross product to get a unit vector field:

U =
xu × xv

|xu × xv|

=
(h′,−g′ cos v,−g′ sin v)√

g′2 + h′2

Note that the denominator here is simply the speed of our profile curve, or equivalently,
√
E.

We continue onwards, taking second derivatives:

xuu = (g′′, h′′ cos v, h′′ sin v)
xuv = (0,−h′ sin v, h′ cos v)
xvv = (0,−h cos v,−h sin v)
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Now, computing dot products we can compute L,M,N :

L =
−g′h′′ + g′′h′√

g′2 + h′2

M = 0

N =
g′h√

g′2 + h′2

So we are finally ready to compute the shape operators. We know that xu, xv are principal
directions (well, we don't know, but I don't want to prove it here; essentially all you need to
know is that the matrices of the quadratic forms we discussed in the last section are diagonal
here, so this gives us a good idea that we picked the ``right basis'').

Given the lemma in the ``normal curvature'' section, we can write:

S(xu) · xu =
U · xuu

xu · xu
=

L

E

S(xv) · xv =
U · xv

xv · xv
=

N

G

And by plugging in, we can compute the principal curvatures, and their product, the Gaussian
curvature.

Before going on to do all the ugly computations, let me go back and direct your attention to the
term appearing everywhere relating to the speed of the profile curve. If the curve is one-to-one
(does not cross back on itself), then by the implicit function theoremwe can pick g(u) = uwithout
losing generality. Then, most of the terms above disappear. Note that g′h′′+g′′h′ = (g′h′)′ = h′′,
and that the speed term becomes (1 + h′2). So we now have the principal directions:

kµ = − h′′

(1 + h′2)3/2

kπ = − 1

h(1 + h′2)3/2

K = kµkπ = − h′′

h(1 + h′2)2

We can further simplify this by picking a unit-speed profile curve, called the canonical
parametrization of the surface. In this case, it is easy to see that:

E = g′2 + h′2 = 1

F = 0

G = h2

And our principal curvatures and Gausssian curvature are now:

kµ = −h′′

kπ = − 1

h

K = kµkπ = −h′′

h
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Theorem Suppose M is a minimal surface of revolution. Then M is a section of either a plane
of a catenoid.

To prove this theorem, we look at x = (g, h cos v, h sin v). We consider three cases.

Case 1 In this case, g′ = 0 everywhere. Then, g is constant, so M is planar.

Case 2 In this case, g′ = 0 nowhere. Then, we can repeat the earlier trick of picking another
parametrization y(u, v) = (u, h cos v, h sin v). However, looking at the earlier formulas, if M is
minimal, then

h′′h = 1 + h′2

You can solve this differential equation by setting v = y′ and using separation of variables to
arrive at:

1 + v2 = ah2

And by inspection, we can see that v = sinh(u/a + b) gives us a solution. This is precisely a
catenoid.

Case 2 In this case, g′ = 0 somewhere, but not everywhere. This is a contradiction. If g′ ̸= 0 at a
point, we showed earlier that it locally looks like a catenoid. We cannot preserve continuity and
yet have h′/g′ tend to infinity.

So indeed, the only complete minimal surface is a catenoid (this means something in physics!
We'll get to that later)

0.7 Summary

The shape operator S measures the instantaneous change of the unit normal. The unit normal
is a sort of ``first derivative'' (telling us about the tangent plane), and so S is something like a
second derivative. By looking at S as an algebraic object, we get some invariants of a surface
which will become helpful in defining, as we did for curves, the notion of congruence: principal
curvatures and directions, the Gaussian curvature, and the mean curvature (algebraically: the
eigenvalues of the shape operator).
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