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In this section, we discuss calculus on surfaces. Concretely, surfaces in R3 are comparable to
sections of the Euclidean plane R2; with this correspondence, we can carry over much of the
tools from calculus to surfaces (functions, vector fields, differential forms) and consider surfaces
regardless of their ambient context.

0.1 Surfaces in R3

Definition: Suppose we have a set of points M ⊂ R3. A coordinate patch x : D ⊂ R2 → M is
a one to one, smooth, regular mapping of an open set D ⊂ R2 into Rn. A proper patch has a
continuous inverse x−1; in other words, a proper patch ofM is a homemorphism from Euclidean
space to a subset ofM .

What wewill do is construct an object as a union of (possibly overlapping) patches. Eachmapping
is one-to-one with a one-to-one tangent map everywhere, so we're sure this map is well-defined
for our purposes. Now we can define a surface:

Definition: A surface is aM ⊂ R3 such that for each point p ∈ M , there is a proper patch from
R2 to a neighborhood of p.

An important example is the graph of a differentiable function f(x, y), which is evidently a surface
with coordinate patch given by x(u, v) = (u, v, f(u, v)). We can extend this idea to prove that
level sets are surfaces, given a reasonable criterion.

Theorem Let g be a differentiable real-valued function on R3. LetM = {(x, y, z) | g(x, y, z) = c}.
Then,M is a surface if dg ̸= 0 anywhere on m.

If you think about it, this is kind of a corollary of the Implicit Function Theorem (one of the only
two useful theorems you learn in advanced calculus, along with the Inverse Function Theorem).
We recall our definition of dg, which is a 1-form:

dg =
∂g

∂x
dx+

∂g

∂y
dy +

∂g

∂z
dz

So the criterion that dg ̸= 0 is equivalent to saying that the gradient of g is not zero any-
where. Let's pick a point p = (p1, p2, p3), and say WLOG that gz ̸= 0. By the implicit func-
tion theorem, there is a (unique) differentiable function h so that for all (u, v) in the neighor-
hood of (p1, p2), g(u, v, h(u, v)) = c. So for every point, we have constructed a proper patch
x(u, v) = (u, v, h(u, v)); thusM is a surface.

For example, this means that a sphere is a surface, as are surfaces of revolution.

Definition: Let x : D → R3 be a patch. Then at each point u = (u0, v0), we define two separate
curves u→ x(u, v0) and v → x(u0, v). Their respective velocities are called partial velocities and
are denoted xu and xv.

Note that xu and xv are tangent vectors applied at a given point. It isn't hard to see that if our
patch is x = (x1, x2, x3), then:

xu = (
∂x1
∂u

,
∂x2
∂u

,
∂x3
∂u

)
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So this operation works very much like partial differentiation. We also define parametrization the
usual way:

Definition: A regular mapping x : D :→ M ⊂ R3 is called a parametrization of M . With our
definition of partial velocities from earlier, we can construct an easy test to see if x is a regular
mapping. Let U1, U2, U3 be the coordinate functions. Then we define the cross product:

xu × xv =

 U1 U2 U3
∂x1

∂u
∂x2

∂u
∂x3

∂u
∂x1

∂v
∂x2

∂v
∂x3

∂v


The last two rows of this matrix, notice, are the transpose of the Jacobian matrix. To say that a
mapping is regular, then, is to say that its partial velocities are linearly independent, or equiva-
lently that xu × xv ̸= 0 throughout D.

Now that we have defined a surface in multiple ways, we can begin the difficult task of defining
differentiation.

0.2 Tangent Vectors, Vector Fields, and Directional Derivatives

From here on, we will mirror Part 1 of my notes, defining derivatives, 1-forms, and mappings. A
lot of the proofs in this section are tedious and unenlightening, so I'll try my best to stick to the
Cliffs Notes.

Definition: Suppose that f is a real-valued function defined on a surfaceM . Then f is differen-
tiable if f ◦ x : D →M is differentiable for any patch x ofM .

Definition: Consider a function F : S ⊂ Rn → M . Then F is differentiable if for every patch
x : D →M , the function x−1◦F is differentiable. Wemust first defineO = (p ∈ Rn | F (p) ∈ x(D))
so that the composite function is well-defined; then, differentiability of x−1(F ) : O → R3 is
defined in the usual way if O is an open set.

As a result, we can define coordinate functions of any function F with respect to a patch x. For
example, look at a curve α : I →M . Then, x−1 ◦ α : I → D = (a1, a2) And so we have:

α = x(a1, a2)

Since α is differentiable, you can then say that α1, α2 are differentiable functions. You might
already see a problem here, which is that patches can overlap and give us disagreeing coordinate
functions. We'll deal with that in a little bit.

There is a natural equivalence between our two concepts of differentiable maps. If we take a
differentiable mapping F : Rn → R3 whose image lies in M , then considered as a function on
manifolds, it is differentiable (as above). In other words, if the restriction of a mapping onto M
is differentiable, then F works smoothly with all patches onM .

The proof is basically an exercise in set theory, so I'll spare you the details which you can read
here1 if you're curious. Also, I just realized that the term ``atlas'' is a pun, I guess, because in
real life an atlas is a collection of maps, and a chart is a map. Wow. Anyway, it follows that since
patches are differentiable mappings, they are differentiable on manifolds (meaning they agree
with all other patches). More formally, we state the following corollary.
1http://www.maths.manchester.ac.uk/~tv/Teaching/Differentiable%20Manifolds/2014-2015/2-smooth-maps.

pdf
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Corollary If x and y are overlapping patches for M , then x−1y and y−1 ◦ x are differentiable
mappings defined on open sets of R2.

Indeed, since these composite functions are differentiable, their coordinate functions are differ-
entiable, i.e., there exist unique differentiable functions ū, v̄ so that:

y = x(ū, v̄).

With this lemma, we don't have to check differentiability using all patches, only enough patches
to coverM , because we can transition between different patches using a smooth map (albeit on
a smaller domain). Now that we have differentiation, we're move on to define tangent vectors.

Definition: Let p ∈ M be a point on a surface in R3. Then, a tangent vector v to R3 at p is
tangent toM at p if v is the velocity of some curve inM . The set of all such tangent vectors is
called the tangent plane ofM at p, denoted Tp(M).

So we now have a way of constructing tangent spaces of surfaces, where instead we only had
the tangent space of R3. Now let's prove that a tangent plane is actually a plane (i.e. two dimen-
sional).

Lemma Let p be a point of a surfaceM in R3, and let x be a patch so that x(u0, v0) = p. Then
the partial velocities xu, xv at (u0, v0) form a basis for the tangent plane atM .

We get for free that the partial velocities are linearly independent; we must only show that they
span the tangent plane. Firstly, as we saw before, xu and xv are velocities of curves inM through
p. Suppose we have another vector v in the tangent plane; then there is some curve α with
α(0) = p and α′(0) = v.

Let (a1, a2) be the Euclidean coordinate functions for x−1 ◦ α. Then α = x(a1, a2). But then, by
the chain rule:

α′ = xu
da1
dt

+ xv
da2
dt

Where xu, xv are evaluated at p. So we are done. It is not hard to prove that every linear combi-
nation of xu, xv is a tangent vector as well.

Now that we have tangent vectors, we define vector fields straightforwardly.

Definition: A Euclidean vector field Z on a surface M ⊂ R3 is a function that assigns to each
p ∈M at tangent vector Z(p) to R3 at p.

Note that vector fields do not necessarily give us vectors in the tangent plane. Such a vector
field is instead called a tangent vector field. This is important because we can define things
like a normal vector field. I will leave out the simple proof that for a level set which is a surface,
the gradient vector field is a non-vanishing normal vector field. Finally, we are ready to describe
derivatives, or how tangent vectors are applied to functions at points.

Definition: Let v be a tangent vector toM at p, and let f be a differentiable real-valued function
on M . We define the derivative v[f ] as d

dt (fα(t)) at t = 0 for any curve α with α′(0) = v and
α(0) = p.

This definition is pretty much the same as the one we had earlier for the directional derivative,
except instead of taking a derivative along a line, we're taking a derivative along a curve through
M at p. By the chain rule, you can see that the directional derivative does not depend on which
curve α we pick. Finally, the usual properties of linearity and the Leibniz rule hold.
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0.3 Differential Forms on a Surface

Forms on a manifold (as we will see later, a generalization of a surface) can tell us quite a bit
about its geometry, as we will soon see. Our definitions normally.

• A 0-form is a differentiable real-valued function onM .

• A 1-form is a real-valued linear function on tangent vectors toM at p.

• A 2-form is a real-valued linear function on pairs of tangent vectors toM at p.

A 1-form can be evaluated as before on a vector field V , and 2-forms on pairs of vector fields
V,W .

More concretely, a 2-form η(v, w) is linear in both its arguments and antisymmetric, i.e. η(v, w) =
−η(w, v). As a result, we can determine the value of a 2-form just based on its evaluation on two
linearly independent tangent vectors v and w. In fact, the result looks like the determinant:

η(av + bw, cv + dw) = det
[
a b
c d

]
η(v, w)

The only thing we're missing is a suitable definition for the wedge product of two 1-forms on a
surface. We define:

Definition: If ϕ and ψ are 1-forms onM , then the wedge product ϕ∧ψ is the 2-form onM such
that:

(ϕ ∧ ψ)(v, w) = ϕ(v)ψ(w)− ϕ(w)ψ(v)

So we have the usual anticommutative property from our definition. In general, a wedge product
of a p-form ξ and a q-form η has the law: ξ ∧ η = (−1)pqη ∧ ξ. So on a surface, a minus sign only
occurs when computing the wedge product of two 1-forms.

Now we move on to the exterior derivatives of forms on a surface. As before, we define the
exterior derivative of a 0-form f to be the 1-form df so that df(v) = v[f ]; we already defined
directional derivatives so this makes sense. The only missing ingredient is the exterior derivative
of a 1-form (which ought to be a 2-form).

Definition: Let ϕ be a 1-form on a surfaceM . Then the exterior derivative dϕ is the 2-form such
that for any patch x inM :

dϕ(xu, xv) =
∂

∂u
(ϕ(xv))−

∂

∂v
(ϕ(xu))

You can check that this is indeed a 2-form. The issue here is that patches can overlap. We denote
the above definition as dxϕ. So our goal is to show when two patches x and y overlap at a point,
then dxϕ = dyϕ.
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Lemma We claim that definition above for the exterior derivative is well-defined, i.e. for any
two overlapping patches x and y, dxϕ = dyϕ on their overlap.

Consider any two linearly independent tangent vectors yu and yv. From the earlier discussion,
we know that dxϕ(yu, yv) completely determines dϕ. We also know from earlier that we can find
coordinate functions for y with respect to x, i.e. y = x(ū, v̄). But then by the chain rule:

yu =
∂u

∂u
xu +

∂v

∂u
xv

yv =
∂u

∂v
xu +

∂v

∂v
xv

But now we can use the determinant fact from earlier to rewrite:

dxϕ(yu, yv) = det
[
∂u
∂u

∂v
∂u

∂u
∂v

∂v
∂v

]
dxϕ(xu, xv)

We can regard the matrix above as a sort of a Jacobian matrix (of the coordinate functions of y),
or at least its transpose. Regardless, we denote J to be the determinant of that matrix and write
succinctly:

dxϕ(yu, yv) = Jdxϕ(xu, xv)

The rest of the proof proceeds by using the chain rule, but it is a tedious proof which I will
omit here. Perhaps a more enlightening (and succinct) form of writing the exterior derivative of
1-forms on a surface is:

dϕ(V,W ) = V [ϕ(W )]−W [ϕ[V ]]

Where ϕ(W ) is a function since ϕ is a one form, and so we can take directional derivatives. You can
check that the two definitions are equivalent. The second definition shows us linearity and anti-
commutativity far more clearly. Next we prove another property of exterior derivatives, which is
that d2 = 0. We only need to check this for 0-forms on a surface.

Theorem If f is a real-valued function onM , then d(df) = 0.

First, we write ψ = df ; we claim that dψ = 0. We have:

ψ(xu) = df(xu) = xu[f ] =
∂

∂u
f(x)

ψ(xv) = df(xv) = xv[f ] =
∂

∂v
f(x)

By the equality of mixed partial derivatives, you can check that the terms in dψ cancel.

Let's look at an example and examine differential forms on the plane.
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Differential Forms on the Plane Define ui to be the natural coordinate functions, Ui the natural
frame field (in other words, dui are the dual forms of Ui). Let f be a function on M . Then all
1-forms look like

ϕ = f1du1 + f2du2

Where ϕ(Ui) = fi. The two forms are:

η = gdu1du2

Where g = η(U1, U2). If we define ψ = g1u1 + g2u2, then we can take the wedge product:

ϕ ∧ ψ = (f1g2 − f2g1)du1du2

We can take the exterior derivative of the 0-form f :

df =
∂f

∂u1
du1 +

∂f

∂u2
du2

And the exterior derivative of the 1-form ϕ is:

dϕ = (
∂f2
∂u1

− ∂f1
∂u2

)du1du2

We end this section with one last definition.

Definition: A differential form ϕ is closed if dϕ = 0. A differential form ϕ is exact if ϕ = dξ for
some ξ.

Youmay recognize the exact differential forms from differential equations; exact differential equa-
tions can be easily solved using Stokes Theorem.

0.4 Mappings of Surfaces

We now define mappings between surfaces in a straightforward generalization of the ideas we've
seen so far for mappings.

Definition: A function F : M → N between surfaces is differentiable if for each patch x in M
and y inN , the composite function y−1 ◦F ◦x : D → D′ is differentiable. This is called a mapping
between surfaces.

As before, we don't need to check every pair of patches, but only enough patches to cover the
two surfaces since we can transition smoothly between patches.

We can prove, for example, that the stereographic projection is a differentiable map between
surfaces. Now we define the tangent map.

Definition: Let F :M → N be a mapping between surfaces. Then, the tangent map F⋆ assigns
to each tangent vector v to M at p a tangent vector F⋆(v) to N at F (p). We define F⋆(v) as
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follows: if v is the initial velocity of a curve α in M , then F⋆(v) is the initial velocity of the curve
F (α) in N .

It is maybe not evident, but F⋆ is a linear map between Tp(M) and TF (p)N . By construction, this
map preserves velocities of curves; notably, partial velocities get sent to partial velocities. We
can rewrite succinctly for any curve α through p ∈M :

F⋆(α
′(0)) = (F ◦ α)′(0)

Wedefine amapping to be regular if its tangentmap (a squarematrix) is one-to-one at each point;
equivalently, if F⋆ is a linear isomorphism (invertible square matrix). A mapping with an inverse
is called a diffeomorphism. This leads us to a special case of the inverse function theorem:

Theorem (Inverse Function Theorem) Let F :M → N be a mapping of surfaces such that F⋆,p

is a linear isomorphism for some p ∈M . Then there is a neighborhood of p so that the restriction
of F to that neighborhood yields a diffeomorphism onto a neighborhood of F (p) in N .

We also have that a regular one-to-one mapping F of M onto N is a diffeomorphism, from
definitions. Essentially, diffeomorphic objects are the same up to a smooth transformation.

Now, since mappings of surfaces map tangent vectors to tangent vectors in a well-defined way,
we can imagine differential forms being easily transferrable between surfaces by a composition
of functions. More concretely:

Definition: Let F : M → N be a mapping of surfaces, and ϕ a 1-form on N . Then, define F ⋆ϕ
to be the 1-form onM so that:

(F ⋆ϕ)(v) = ϕ(F⋆v)

for all tangent vectors v toM .

Remark It may be useful to consider the terms ``pushforward'' and ``pullback''. A ``pushfor-
ward'', or differential, is the tangent map we saw earlier. It pushes ``forward'' because it sends
tangent vectors inM to tangent vectors in N .

On the other hand, we also have F ⋆, which pulls ``back'' because given a mapping F fromM to
N , it pulls back a differential form on N to a differential form on M , thus moving ``backwards''
through the map. I'll be using these terms from now on.

We can do the same for two forms:

Definition: Let F :M → N be a mapping of surfaces, and η a 2-form on N . Then, define F⋆η to
be the 2-form onM so that:

(F ⋆η)(v, w) = η(F ⋆(v), F ⋆(w))

We will also denote F ⋆(f) = f(F ) for 0-forms or functions on N , for consistency; F ⋆ denotes a
pullback, which make sense here as we are pulling back a function on N to a function onM . We
finally end up with these elegant formulas for forms:
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Theorem Let F : M → N be a mapping of surfaces, and η and ξ are forms on N . Then we
have:

• F ⋆(η + ξ) = F ⋆(η) + F ⋆(ξ).

• F ⋆(η ∧ ξ) = F ⋆(η) ∧ F ⋆(ξ).

• F ⋆(dξ) = d(F ⋆ξ)

The first two statements are pretty straightforward computations. The last one has a proof that's
a little bit long, but not too important to the general understanding of the ideas, so I will omit it.

0.5 Integration on Surfaces

Recall how we defined calculus in Euclidean space; we integrate, for example, with respect to
1-forms dx and dy. But now that we have differential forms on surfaces, we can pull them back to
Euclidean space and then integrate there. Thus we can formally define integration on surfaces.

For example, consider a curve on a surface α : I →M . Then what is the pullback of a 1-form on
M? It is a 1-form on R, so it is of the form f(t)dt for some f . To find the coefficients of the ith
dual form, we evaluate Ei; in this case we only need to evaluate α⋆ϕ(Ui). So we have:

(α⋆ϕ)(U1) = ϕ(α⋆(U1))

Recall how we defined the tangent map:

F⋆(v) =
∑

v[fi]Ui

And in this case:

α⋆(U1) = U1[α] = α′(t)

So for any 1-form ϕ on M , and a curve α(t), we have a pullback α⋆ = ϕ(α′(t))dt. This is a fairly
flexible result and we can do a lot with it.

Definition: Let ϕ be a 1-form on M and let α : [a, b] → M be a curve in M . Then we define the
integral of ϕ over α as follows:

∫
α

ϕ =

∫
[a,b]

α⋆(ϕ) =

∫ b

a

ϕ(α′(t))dt

This should look a lot like the definition of a line integral. And indeed, we can, for example
calculate work. Suppose we have some vector field V , representing a force field, and consider
the dual form ϕ to V , defined analogously to how we defined dual forms for frame fields in Part
II. So we define ϕ(w) = w · V at each point. Then, we can elegantly write the formula for work
as a line integral:

W =

∫
α

V (α(t)) · α′(t)dt =

∫
α

ϕ(α′(t))dt =

∫
α

ϕ
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What if ϕ is an exact form, i.e. ϕ = df for some 0-form f? We get the corresponding generaliza-
tion of the fundamental theorem of calculus.

Theorem Let f be a function on M , and let α be a curve where α(a) = p, α(b) = q. Then we
claim that:

∫
α

df = f(q)− f(p)

As a corollary, this means that exact forms (related in physics to conservative vector fields) are
independent of path, and vanish on closed paths. The proof comes from definitions:

∫
α

df =

∫ b

a

df(α′)dt

But we earlier defined the action of 1-forms on surfaces:

df(α′) = α′[f ] =
d

dt
(f ◦ α)

Where we omitted here the point of application determined by t. Returning to our integral, we
have:

∫
α

df =
d

dt
(f ◦ α(t))dt = f(α(b))− f(α(a)) = f(q)− f(p)

And we get the result by the fundamental theorem of calculus.

The amazing thing is that we can do something very similar if we pull back a 2-form ξ onM . Again,
we know that the pullback will be of the form h(u, v)dudv, and we can compute h explicitly by
calculating h = x⋆ξ(U1, U2). But we have from our definitions:

h = (x⋆η)(U1, U2) = (η)(x⋆(U1), x⋆(U2))

We check that x⋆(U1) =
∑
U1[xj ]Ūj = xu, and proceed similarly for the other term; so our

computation above simplifies to:

h = (x⋆η)(U1, U2) = η(xu, xv)

Now that we can pull back 2-forms, we can accordingly define double integrals over surfaces.

Definition: Let η be a 2-form on M , and let x : R → M be a map from a rectangle [a, b] × [c, d]
in the plane intoM . Then the integral of η over x is defined as:
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∫ ∫
x

η =

∫ ∫
R

x⋆η =

∫ b

a

∫ d

c

η(xu, xv)dudv

The corresponding ``conservation'' theorem, wherein we compute the integral of an exact 2-form
onM , gives us none other than Stokes' Theorem.

0.6 Theorem: Stokes’ Theorem

We will compute the integral of a 2-form η = dϕ over x as above. First, we define a boundary ∂x
for x, which is a closed curve. We do this by defining its four sections:

• α(u) = x(u, c)

• β(v) = x(b, v)

• γ(u) = x(u, d)

• δ(v) = x(a, v)

Then we define the boundary as the counterclockwise traversal of these four segments, i.e. δx =
α+ β − (γ + δ).

Now we can state the Stokes' Theorem in full:

∫ ∫
x

dη =

∫
∂x

ϕ

Proof We first apply our definition above to rearrange the integral on the left hand side:

∫ ∫
x

dϕ =

∫ b

a

∫ d

c

dϕ(xu, xv)dudv

And from our definition of the exterior derivative of a 1-form earlier, we can rewrite:

∫ ∫
R

dϕ(xu, xv) dudv =

∫ ∫
R

[
∂

∂u
ϕ(xv)−

∂

∂v
ϕ(xu)

]
dudv

For convenience sake, we write f = ϕ(xu) and g = ϕ(xv), to arrive at:

∫ ∫
R

dϕ(xu, xv) dudv =

∫ ∫
R

∂g

∂u
dudv −

∫ ∫
R

∂f

∂v
dudv

Let's take a look at the integral on the left hand side. We treat it as an interated integral, i.e. de-
fine I(v) =

∫ b

a
∂g
∂u dudv:

∫ ∫
R

∂g

∂u
dudv =

∫ d

c

I(v)dv
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Now note that for a given fixed value of v, the integrand of I(v) is not a partial derivative but
just a derivative. We then apply the fundamental theorem of calculus to get:

I(v) =

∫ b

a

dg

du
du = g(b, v)− g(a, v)∫ ∫

R

∂g

∂u
dudv =

∫ d

c

g(b, v)dv −
∫ d

c

g(a, v)dv

Now, we look at the left integral, remembering that we defined earlier g = ϕ(xv). Using our
boundary from earlier, we have that xv(b, v) = β′(v). So finally we write:

∫ d

c

g(b, v)dv =

∫ d

c

ϕ(β′(v))dv =

∫
β

ϕ

Repeating this argument for the other integral above, we have:

∫ ∫
R

∂g

∂u
dudv =

(∫
β

ϕ−
∫
δ

ϕ

)

Continuing onwards, we finally arrive at:

∫ ∫
x

dϕ =

(∫
β

ϕ−
∫
δ

ϕ

)
−
(∫

γ

ϕ−
∫
δ

α

)
=

∫
∂x

ϕ

And we are done. We also note that reparametrizations can be orientation-preserving or orien-
ation reversing, which affect the line integral by a sign.

0.7 Topological Properties of Surfaces

I will assume here a basic knowledge of concepts in topology such as connectedness and com-
pactness. We'll look at how these properties can be defined on a surface.

Definition: A surface is connected if for each p, q ∈M , there is a curve from p to q inM .

Lemma A surface M is compact iff it can be covered by the images of a finite number of rect-
angles inM .

First, we prove the backwards direction. Suppose M is compact. For each p ∈ M , p lies in the
image of some rectangle under a patch x. A finite number of such patches coversM , sinceM is
compact; therefore the number of corresponding rectangles is finite.

Conversely, assume thatM is covered by the images of a finite number of rectangles.

We first prove a lemma, that the image of a rectangle under a patch x is compact. Since x is
differentiable, we assume it can be extended to an open set containing the rectangle.

Now, let (Uα) be an open covering ofM ,and r ∈ D be a point in the rectangle. Then x(r) ∈ Ur

for some Ur ∈ (Uα). Since x is continuous, the preimage of Ur is a neighborhood Nr in the
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rectangle. For all r, these neighborhoods form an open covering of the rectangle. Since there
are finitely many Nr, there are finitely many Ur; thus, we have constructed a finite covering of
x(R).

Returning to the original problem, assume thatM is covered by the images of a finite number of
rectangles. Suppose that we have some open covering for M . We just showed that the image
of each rectangle is covered by a finite subcovering; therefore, taking a finite union of finite sets,
we arrive at a finite subcovering forM .

Lemma A continuous function on a compact region in a surfaceM takes on a maximum some-
where in the region.

This lemma follows straightforwardly from the similar theorem that a function in a compact region
in Euclidean space (a rectangle) attains a maximum.

This can show us that many objects are not compact. For example, a cylinder is not compact
since the coordinate z is unbounded. Loosely, you expect a compact object to be closed with a
smooth boundary.

Definition: A surface M is orientable if there exists a differentiable 2-form µ on M which does
not vanish onM .

This definition makes a little more sense if we connect it to unit normal vector fields.

Proposition A surface M in R3 is orientable iff there is a unit vector field U on M . If M is
connected, then ±U are the only two unit normal vector fields.

Proof First, we prove the backwards direction. Say that there is a unit normal vector field U on
M . Then we can define:

η(v, w) = U · (v × w)

It is clear that this is a 2-form, since the determinant is linear in its rows, and the cross product is
anti-symmetric. The 2-form is determined by its value on a linearly independent pair of vectors,
in which case the three vectors U, v, w are linearly independent, and so the triple product is
non-zero.

Conversely, suppose thatM is orientable and there is a non-vanishing 2-form µ. Then define the
following vector field:

Z(p) =
v × w

µ(v, w)

Where v, w are any two linearly independent tangent vectors. Since they are two tangent vectors,
their cross product is a normal vector; if you check its magnitude, it is the determinant of the
coordinates of v, w, which is a multiple ofmu(v, w). So this vector field is normal to each tangent
plane, does not vanish and does not depend on the choice of v, w. To make it a unit normal
vector field, all we have to do is divide by the magnitude.

On a connected surface, a non-vanishing differential function cannot change sign (intermediate
value theorem), so that up to sign, there is only one unit normal vector field.
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For example, level sets have a unit normal vector field (the gradient), so they are all orientable.
Similarly, parametrizations are orientable.

Definition: A closed curve α in M is homotopic to a constant if there is a rectangle R and a
patch x : R → M , called a homotopy, defined on [a, b]× [0, 1], such that x(u, 0) = α(u) and the
other three edge curves x(u, 1), x(b, v), x(u, 1) = α(a) = α(b) = p are constant.

Intuitively, a homotopy is a continuous deformation. This motivates our definition:

Definition: A surfaceM is simply connected if it is connected and every loop inM is homotopic
to a constant.

This means, intuitively, that there are no ``holes''; each loop inM can be shrunk down to a single
point. We can come up with a fairly easy test for simple connectedness:

Lemma Let ϕ be a closed 1-form onM . If a loop α is homotopic to a constant, then
∫
α
ϕ = 0.

The proof is straightforward. dϕ = 0 by definition. By Stokes' Theorem,
∫
∂x
ϕ = 0 for any

boundary ∂x. In particular, there is a boundary on which three edges are constant, so that
∫
∂x
ϕ =∫

α
ϕ = 0.

Next, we consider that earlier we defined exact forms such that every exact form is closed (since
d2 = 0). But under what conditions is a closed form exact? Well, turns out, on any simply
connected surface, this is true for 1-forms.

Lemma (Poincaré) This nice lemma says that on a simply connected surface, every closed 1-
form is exact; so that if dϕ = 0, then ϕ = df for some f .

Proof First, we show that the integral of a closed 1-form is path independent on a simply con-
nected surface. Suppose we have two curves α and β from p to q. Then α − β is a closed
loop. Every loop on a simply connected surface is homotopic to a constant. Thus, by our lemma,∫
α−β

ϕ = 0, or equivalently
∫
α
ϕ =

∫
β
ϕ.

Now, suppose that ϕ is a 1-form on a simply connected surface. We define f(p) =
∫
δ
ϕ, where δ

is any curve from a fixed point p0 to p. From earlier, we know that f is well-defined everywhere.
We claim then, that df = ϕ, or in other words that df(v) = ϕ(v) for every tangent vector at p.

Let α : [a, b] → M be any curve with initial velocity α′(a) = v and initial position α(a) = p. Then
we can append this curve to δ to obtain a curve from p0 to α(t). Let's call this curve γ. By the
definition of f :

f(α(t)) =

∫
γ

ϕ = f(p) +

∫ t

a

ϕ(α′(u))du

Taking the derivative and applying the fundamental theorem of calculus, we have α′[f ] = (f ◦
α)′(t) = ϕ(α′(t)). In particular, at t = 0, we get v[f ] = ϕ(v). Indeed, df(v) = ϕ(v). This construc-
tion is more or less what we would expect, and mirrors the proof of the fundamental theorem of
calculus.

I leave the last two theorems in this section without proof, as we'll get to them later.

14



Theorem A compact surface in R3 is orientable. (Corollary of the Jordan Curve Theorem)

Theorem A simply connected surface is orientable.

0.8 Manifolds

Now we will generalize the basic concepts about surfaces to consider examples beyond R3. First
we start with patches. We may have an abstract patch, which is a one-to-one map from D ⊂ R2

into the set M , which does not necessarily sit inside an ambient Euclidean space. By gluing
together abstract patches, we get a manifold.

Definition: A surface is a set M with a collection P of abstract patches satisfying the following
axioms. - The images of the patches P cover M . - Patches smoothly overlap. For any patches
x, y ∈ P, the composite functions x−1y, y−1x are differentiable in the Euclidean sense, defined
on open sets in R2.

We also wish to define a topology on the surface. So, for any patch x, the image of an open set
in D is an open set in M , as well as their unions. We must add one last axiom for open sets to
work nicely.

• The Hausdorff axiom. For any points p ̸= inM , there are disjoint patches x, y with p in x(D)
and q in y(E), i.e. a surface is a Hausdorff space.

Mostly everything else carries over except for velocities.

Definition: Let α : I →M be a curve in an abstract surfaceM . For each t ∈ I the velocity vector
α′(t) is the function so that:

α′[f ] =
d

dt
(f ◦ α)

So, α′(t) is a function whose domain is the set of real-valued functions on M . Finally, we gener-
alize further to manifolds.

Definition: An n-dimensional manifoldM is a set with a collection P of abstract patches (one to
one functions x : D →M,D ⊂ Rn open) satisfying:

• The covering property. The images of the patches in P coverM .

• The smooth overlap property. For any patches x, y ∈ P, the composite functions x−1y, y−1x
are differentiable in the Euclidean sense, defined on open sets in R2.

• The Hausdorff axiom. For any points p ̸= inM , there are disjoint patches x, y with p in x(D)
and q in y(E), i.e. a surface is a Hausdorff space.

Thus, an abstract surface is simply a 2-manifold.

0.9 Example

An example of a 4-dimensional manifold is the tangent bundle of a surface. For a surfaceM , let
T (M) be the set of all tangent vectors toM at all points ofM .
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To get patches in T (M), we convert our patches on M to abstract patches. Given a patch
x : D →M , let D̃ be the open set inR4 consisting of all points (p1, p2, p3, p4) for which (p1, p2) inD.
Then we define an abstract patch x̃ : D̃ → T (M) given by:

x̃(p1, p2, p3, p4) = p3xu(p1, p2) + p4xv(p1, p2)

It is not difficult to check that each x̃ is one-to-one and that the collection of patches satisfies
the properties of a manifold. T (M) is called the tangent bundle ofM .
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