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In this section, we discuss Euclidean geometry in more detail using the tools introduced in the
previous two parts. The main ideas of this article revolve around isometries, which will stand in
for a notion of congruence for geometrical objects. This will be a shorter chapter, since there's
not much to do but apply definitions.

0.1 Isometries of R3

Definition An isometry (also called a rigid motion) of R3 is a mapping from R3 to itself so that
d(F (p), F (q)) = d(p, q) for all points p, q ∈ R3. d(x, y) is Euclidean distance.

Translations and rotations are examples of isometries. As we will see, all isometries can be built
from these two fundamental transformations.

Definition: An orthogonal transformationC inR3 preserves dot products, i.e. C(x)·C(y) = x·y

An example of an orthogonal transformation is rotation (easy to see if you consider the definition
of dot products involving angles between vectors). It is hopefully easy to see that orthogonal
transformations also then preserve norms, and therefore they are isometries.

Lemma Suppose F is an isometry such that F (0) = 0. Then F is orthogonal. The proof is fairly
straightforward. First we show that F preserves norms:

d(0, F (p)) = d(F (0), F (p)) = d(0, p)

Since F (p) is an isometry which preserves norms:

|F (p)− F (q)| = |p− q|
(F (p)− F (q)) · (F (p)− F (q)) = (p− q) · (p− q)

Multiplying out and cancelling the squared terms since they are simply norms:

F (p) · F (q) = p · q

And thus F is indeed orthogonal. It is not hard to prove that F is linear from what we have shown
simply by taking dot products with a given orthonormal basis.

Theorem Let F be an isometry of R3. Then there is a unique translation T and a unique orthog-
onal transformation C so that F = TC.

This isn't hard to prove either. We let T−1 be the translation by F (0). Then T−1F sends 0 to
0, and by our earlier lemma it is an orthogonal transformation. Proving uniqueness isn't too
enlightening. This means we can write any isometry:

F (p) = a+ Cp

Where C is an orthogonal matrix and a is a vector.
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0.2 The Tangent Map of an Isometry

We now calculate the tangent map of an isometry. The main theorem here is that:

Theorem Let F = TC be an isometry. Then:

F ⋆ (vp) = C(v)F (p)

Recall that F⋆ sends tangent vectors at p to tangent vectors at F (p). We claim that the tangent
map specifically sends any isometry to simply its orthogonal component. You can prove this from
the definition:

F (p+ tv) = TC(p+ tv) = a+ C(p) + tC(v)

= F (p) + tC(v)

Taking the derivative at t = 0 gives us exactly the statement we need.

An immediate corollary is that isometries preserve dot products of tangent vectors, along with
norms and orthogonality:

F⋆(vp) · F⋆(wp) = C(v)F (p) · C(w)F (p) = C(v) · C(w) = v · w

Where the last equality comes from the definition of orthogonal transformations as exactly those
transformations which preserve dot products.

Now, we can also prove that isometries are uniquely determined by frames:

Theorem Given two frames of R3 ei at p and fi at q, there exists a unique isometry F so that
F⋆(ei) = fi.

To prove this, we pick C to be the unique linear transformation from ei to fi; since both are
orthogonal bases, it is not hard to see that C (a change of basis matrix) is indeed orthogonal.
Finally, let T be the translation T (p) = p + q − C(p). With these two transformations, define
F = TC.

It is evident then that F (p) = T (C(p)) = q. By the earlier lemma, F⋆(ei) = fiq .

We can compute this orthogonal component explicitly. It is not hard to check (just involves
linear algebra) that if the attitude matrix of fi is B, and the attitude matrix of ei is A, then
C = B−1A = BTA. The translation portion is as we saw earlier.

0.3 Orientation

We define the orientation of a frame to be the determinant of its attitude matrix, or equivalently
the triple product of the frame's vectors. Since the attitude matrix is orthogonal, its determinant
is ±1, giving respectively right and left handed orientations.

We can also define the sign of an isometry F to be the determinant of its orthogonal component,
i.e. sgnF = detC. It is not hard to prove that the sign multiplies against orientation, i.e. a
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positively oriented isometry preserves orientation while a negatively oriented isometry flips it;
we call these orientation-preserving and orientation-reversing isometries. As a final theorem,
we can check that the orientation of an isometry multiplies into cross products:

F⋆(v × w) = (sgnF )(F⋆(v)× F⋆(w))

0.4 Euclidean Geometry

This is more of a philosophical point than anything. Some consider to be ``Euclidean geometry''
all the properties which are preserved by isometries (dot products, cross products, etc). A more
specific definition would be to consider properties which are preserved by isometries but not by
arbitrary diffeomorphisms or mappings.

Note We define differentiation for vector fields componentwise, where the components are
defined with respect to the natural coordinate functions Ui.

Velocity First, let's take a look at the velocity vector. We define Y =
∑

yiUi. Then, using the
definition of the tangent map, we can write:

F⋆(Y
′) = F⋆(Y

′) = CY ′

= (CY )′ = (F⋆(Y ))′

As an immediate result, isometries preserve acceleration.

Theorem: Isometries & The Frenet Frame Using the earlier proof, and the properties of the
tangent map, we can prove that the Frenet apparatus is more or less preserved. Let β be a unit-
speed curve in R3 with positive curvature, and let β be the image of the curve under an isometry
F . Then:

• κ = κ

• T = F⋆(T )

• N = F⋆(N)

• B = (sgnF )F⋆(B)

• τ = sgn(F )τ

The torsion and binormal formulas involve a sign because of the involvement of the cross product.

0.5 Congruence of Curves

Definition: Two curves α, β are congruent if there exists an isometry F such that F (α) = β.
Curves that are the same up to translation are called parallel.

This is the big theorem in this section. We hope that the ``unique'' identifying properties of curves
relates to curvature and torsion. We first note that two curves are parallel if their velocities are
everywhere parallel, by integration. We state our congruence theorem:
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Theorem If α, β : I → R3 are unit speed curves such that κα = κβ and τα = ±τβ , then the two
curves are congruent.

We can prove this theorem by construction. Fix an ``initial point'' in the interval I, and let F be
the unique orientation-preserving isometry which sends the Frenet frame of α at t = 0 to the
Frenet frame of β at t = 0. By our earlier theorem about isometries, it immediately follows that
the new curve's Frenet apparatus (all three vectors, curvature, and torsion) is the same as that
of β (if there is a sign error in torsion, apply instead an orienation-reversing isometry). It is not
hard to show that this curve is parallel to β, and thus we are done since the two curves start at
the same location.
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