
Differential Geometry, Part II: Frame Fields
Jay Havaldar



This section is mostly concerned with constructing a ``natural'' frame for curves in R3, with the
Frenet apparatus, and state some fundamental theorems using those constructions. This ap-
proach will be generalized when studying surfaces by looking at curves on the surface.

Definition: A set e1, e2, e3 of mutually orthogonal vectors is a frame if ei · ej = δij .

Definition: A regular curve α(t) has α′(t) = 0. Basically, it has no cusps.

0.1 Curves

Definition: The arclength s of a curve α(t) is computed as s =
∫
|α′(t)|dt. It is not hard to prove

by the chain rule that the arclength is the same independent of parametrization.

Theorem There is a reparametrization of any regular curve α(t) with unit speed. In fact, this is
the parametrization by arclength. Take a curve α(t) with β(s) = α(t(s)). We define t(s) to be
the inverse function of the arclength function s(t) (which exists by the inverse function theorem
since by hypothesis the curve is regular). Then, β′(s) = α′(t(s)) · dt

ds = ds
dt (t(s)) ·

dt
ds (s) = 1.

Definition: A reparametrization α(h) is called orientation preserving if h′ ≥ 0 and orientation
reversing if h′ ≤ 0.

Definition: A vector field Y on a curve α assigns to each t a tangent vector Y (t) at α(t); for
example, velocity is a vector field defined on a curve.

We can differentiate vector fields, and operations on vector fields can give you more vector
fields (addition, cross product, scalar multiplication by a real-valued function) or even a scalar
field (dot product). We define the derivative of a vector field componentwise. Analogously for
the definition for tangent vectors, Y is defined to be parallel if its vector components everywhere
are the same; it is clear that this is equivalent to the condition that Y ′ = 0.

0.2 Frenet Formulas

Finally we get around to defining a local orthonormal nautral frame defined everywhere on a
curve. Take a unit speed curve, then you can define its velocity vector ,T , which is called the unit
tangent vector field. T ′ measures the amount the curve is turning away from its trajectory and is
called curvature. A short summary of the Frenet apparatus follows:

• T = α′(s) where α is a unit speed curve is called the tangent vector field.

• κ(s) = |T ′(s)| is the curvature.

• N = T
κ is a unit vector field called the (principal) normal vector field. It is perpendicular to

T .

• B = T ×N is the binormal vector field, completing the Frenet frame.

• τ = −|B′(s)| is the torsion. The reason for the minus sign will be apparent later on.
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Theorem The key here is that we can represent the derivatives of T,N,B in terms of this frame.
We can write the matrix equation:

T
N
B

′

=

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B


Note that thematrix is skew symmetric! The spectral theorem tells us that a real symmetric matrix
has only real eigenvalues, and similarly a real skew symmetric matrix has only pure imaginary
eigenvalues.

Generally, geometric problems are solved using just the Frenet formulas and looking at deriva-
tives. We can prove that a curve is a plane curve, that it is a circle, or place a lower bound on the
curvature of a curve on a sphere. Here are some easy to prove results using the Frenet frame:

• κ = 0 iff the curve is a straight line.

• τ = 0 iff the curve lies on a plane.

• κ is constant and τ = 0 iff the curve is a circle of radius 1
κ .

• τ
κ constant and nonzero iff the curve is a cylindrical helix.

• κ is constant and τ = 0 iff the curve is a circular helix.

0.3 Covariant Derivatives

Recall that for a function, we were able to define the directional derivative of a real-valued func-
tion f with respect to a vector v:

v[f ] =
d

dt
f(p+ tv)t=0

We will do a similar construction with vector fields instead of real-valued functions.

Definition: LetW be a vector field, v is a tangent vector field at p. Then the covariant derivative
of W with respect to v is the tangent vector:

∇vW =
d

dt
W (p+ tv)t=0

The definition is almost analogous, except in this case the result is a vector and not a scalar.
The covariant derivative of a vector field with respect to a vector is clearly also a tangent vector,
since it depends on a point of application p. The covariant derivative measures the initial rate of
change of W (p) along the v direction. Let's see an example.

Example LetW = x2U1+yzU3, where Ui are the Euclidean coordinate functions. Pick a tangent
vector v = (−1, 0, 2) and a point p = (2, 1, 0). Then we have the line:

p+ tv = (2− t, 1, 2t)

3



This gives rise to a vector field W (p + tv) = (2 − t)2U1(p + tv) + 2tU3(p + tv). Finally we can
compute:

∇vW = W (p+ tv)′(0) = −4U1(p) + 2U3(p)

And we can evaluate this vector field by computing the coordinates U1(p) and U2(p), which of
course are x and y unit vectors everywhere. So indeed, the result lies in the tangent space at p.

Lemma The example above clues us into a simpler formula for the covariant derivative. Sup-
pose W =

∑
wiUi, and we take a tangent vector v at p. Then we extend the notion of the

directional derivative to write:

∇vW = W ′(p+ tv)(0)

=
d

dt

∣∣∣
t=0

∑
wi(p+ tv)Ui(p+ tv)

=
∑ d

dt

∣∣∣
t=0

wi(p+ tv)Ui(p+ tv)

=
∑

v[wi]Ui(p)

To apply ∇vW to a vector field, apply v to each of its Euclidean coordinate functions (take the
directional derivative of each of its components in the direction of v). We can prove various
properties similar to derivative properties using this definition.

We can also define the covariant derivative of one vector field. We define ∇V W to be at each
point defined as ∇V (p)W . You can think of it as directional derivative of W along V (p), then
projecting it onto the tangent space given by V . In short, the covariant derivative measures
the initial rate of change of W (p) as p moves in the direction of V (p). It's difficult to formulate
a geometric meaning for what this is, since W has many components as does V ; it is best to
just think of it as some algebraically consistent way of extending the notion of the derivative
consistently to vector fields. By consistently, what I mean is that we preserve linearity (with
respect to both vector field arguments at a given point), as well as some suitable Leibniz-esque
property for products. In the case of vector fields, we handle both scalar and vector (inner)
products.

Properties of the Covariant Derivative We have the following properties, analogously with our
other conceptions of the derivative.

• ∇av+bwY = a∇vY + b∇wY

• ∇v(aY + bZ) = a∇vY + b∇vZ

• ∇v(fY ) = ∇vf Y (p) + f(p)∇vY

• ∇v(Y · Z) = ∇vY · V (p) + Y (p) · ∇vZ

And all these follow fairly straightforwardly from applying the definition. If instead we are taking
the covariant derivative along a varying vector field, we have:

• ∇fV+gWY = f∇V + g∇WY

• ∇V (aY + bZ) = a∇V Y + b∇V Z
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• ∇V (fY ) = ∇V fY + f∇V Y

• ∇V (Y · Z) = ∇V Y · Z + Y · ∇V Z

Frame Fields Definition: Vector fieldsE1, E2, E3 form a frame field onR3 if everywhereEi·Ej =
δij .

With a frame field, we can define coordinate functions, i.e. for a vector field V and a frame
field Ei, then we can write V =

∑
fiEi by orthonormal expansion, and V · Ei are called the

coordinate functions. We can define dot products by multiplying componentwise with respect
to these coordinate functions.

0.3.1 Connection Forms

We can, similarly to the construction with Frenet fields, express the covariant of coordinate fields
in terms of the coordinate fields themselves. For example, take an arbitrary vector tangent v at
a point p. Then we can indeed write:

∇vE1

∇vE2

∇vE3

 = ω ·

E1

E2

E3


Where ωij(v) = ∇vEi ·Ej(p). In fact, each ωij(v) is a 1-form, called the connection form. Recall
that a 1-form is a linear function in its arguments, which is clearly true here by the linear properties
of the covariant derivative. Another way to look at it is that wij are elements of the dual space
of the tangent space (hence, the cotangent space, or something). Furthermore, we can prove:

∇v(Ei · Ej) = ∇vEi · Ej +∇vEj · Ei

= ωij(v) + ωji(v)

This means that ω is a skew-symmetric matrix with 0 along the diagonals. By now, you should be
reminded of the Frenet formulas, which had the same exact setup. The physical intuition is that
ωij(v) is the initial rate at which Ei rotates towards Ej as p moves in the v direction.

We can now get to the connection equations of the frame field:

∇V (Ei) =
∑
j

ωij(V )Ej

This bears a striking resemblance to the Frenet equations:

T
N
B

′

=

 0 κ 0
−κ 0 τ
0 −τ 0

T
N
B


Note that, the only key difference is that ω13(V ) is zero, since we define the derivative of the
tangent vector such that it is entirely in the direction of N (in fact, that is how we pick N ), so
it makes sense that the rate at which T rotates towards B is always zero. The rates of change
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here are computed along T alone, but the coefficients can also apply to arbitrary vector fields.
This is why the connection forms are 1-forms, as they are functions of vectors and not real-valued
functions. In this sense, the connection forms allow us to encapsulate information about all the
covariant derivatives at the same time.

We can find an explicit formula for the connection forms of an arbitrary frame field Ei. First, we
express each Ei in terms of Ui, the natural frame field, to obtain a matrix:

E1

E2

E3

 = A

U1

U2

U3


The matrix A is called the attitude matrix of the frame field. This matrix is orthogonal (its rows
are orthogonal unit vectors). We define its differential dA to be the differential of each of the
1-forms in its entries, i.e. dAij = d(aij).

Theorem We can write the connection forms simply as:

ω = dA ·AT

Proof The proof is a little bit tedious. I'm warning you! First, recall that aij is the jth coordinate
of Ei with respect to the natural coordinates Ui. We will then say that aij = E

(j)
i . Then, we write

out an arbitrary wij :

ωij(v) = (dA ·AT )ij =
∑
k

d(aik)(v) ·Ajk

=
∑
k

v[aik] ·Ajk

=
∑
k

v[E
(k)
i ] · E(k)

j

= ∇vEi · Ej

And we are done. This formulation will make some later proofs a lot easier.

0.4 The Structural Equations

Definition: The dual 1-forms of a frame field Ei are the 1-forms θi defined such that θi(v) =
v · Ei(p) for each tangent vector v.

For example, in the case of the natural frame field, θi = dxi since dxi(v) = vi. Using dual 1-forms,
we can write any vector field V in the tangent space in a different basis as: V =

∑
θi(V )Ei. In

fact, θi is the dual basis of Ei.
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Lemma We let θi be the dual forms of a frame field Ei. Then any 1-form ϕ has a unique rep-
resentation ϕ =

∑
ϕ(Ei)θi; in this sense the dual forms form a basis for the 1-forms. This is

the generalization of the earlier statement that any 1-form on R3 can be written in the form
fdx+ gdy + hdz.

Note that θi(Uj) = Ei · Uj = Aij . So therefore, by the preceding lemma, we can concisely write
the dual forms in the matrix equation:

θ1θ2
θ3

 = A

dx1

dx2

dx3


Now we are faced with the question of finding exterior derivatives of our new objects, the con-
nection forms and the dual forms. These are represented by Cartan's structural equations.

The Structural Equations The first structural equations are:

dθi =
∑
j

ωij ∧ θj

Compare to the connection equations:

∇V (Ei) =
∑
j

ωij(V )Ej

And the second equations:

dωij =
∑
k

ωik ∧ ωkj

The first equations mirror closely the connection equations, since θi are the dual forms of Ei. To
prove these two, first denote ξ to be the column vector consisting of the natural coordinates xi

of Euclidean space (in other words, 0-forms). Then we can write:

θ =

θ1θ2
θ3

 and dξ =

dx1

dx2

dx3


So the formula for the dual forms can be written succinctly:

θ = Adξ

Though matrix multiplication works as normal, recall that 1-forms have a separate multiplication
operation.
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Proof of First Structural Equation We have d(dξ) = 0 by definition of the exterior derivative.
Recall that A is orthogonal so:

dθ = d(A dξ) = dA · dξ + 0 = dA ·AT ·A · dξ = ωθ

Which puts the first structural equations all in one matrix. ω and θ have 1-forms as their entries.

Proof of Second Structural Equation For functions f and g, we have:

d(g df) = −df ∧ dg

This is from the modified product rule for exterior derivatives. We apply this formula to ω:

d(ω) = d(dA ·AT ) = −dA · d(AT )

= −dA ·AT ·A · (dA)T

= −ω · ωT

= ω2

The last equality follows from the skew-symmetry of ω.

0.5 Summary

The first major idea here is that we can generalize our work with the triple of vector fields that
is the Frenet frame to study arbitrary frames, and represent the covariant derivatives in terms of
the frame itself with Cartan's equations. We can also exent these formulas to a ``dual'' notion
by considering dual frames, which are not triples of vector fields but triples of cotangents, which
are functionals on tangent vectors.
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